
GoSam 2.0 Manual

The GoSam Collaboration

Version May 22, 2015

Contents

1 Introduction 3

2 Download and installation 4

2.1 Prerequisites . 4

2.2 Download . 4

2.3 Installation . 5

2.3.1 Additional information about the installation process 5

2.3.2 Updating an existing installation . 6

2.3.3 Uninstalling . 6

2.4 Description of the components . 6

3 Setup of a process 8

3.1 Example: e+e− → tt̄ at NLO in QCD . 8

3.2 Process directory structure . 19

3.3 Code generation and compilation . 21

3.3.1 Producing optimised code with FORM version 4 21

3.3.2 Grouping/summing of diagrams which share common subdiagrams 22

3.3.3 Numerical polarisation vectors . 23

3.3.4 The extension derive . 23

3.3.5 Customization . 24

3.4 Drawing the Feynman diagrams . 25

3.5 Import of model files . 26

3.5.1 Import from FeynRules . 26

3.5.2 Import from LanHEP . 27

3.5.3 Propagators for spin-2 particles . 28

4 Stability tests and rescue system 30

5 Electroweak corrections 33

5.1 Electroweak scheme choice . 33

5.2 Support of complex masses . 34

6 Advanced diagram selection 35

6.1 Restricting the generation with QGraf . 35

6.2 Selecting diagrams by their number . 35

6.3 Filtering diagrams in Python . 35

7 The Binoth Les Houches Accord Interface 38

7.1 Preparation of the order file . 38

7.2 Running GoSam . 40

7.3 Producing the libraries containing the virtual amplitudes 41

7.4 Calling the interface routines . 42

7.4.1 BLHA1 . 42

7.4.2 BLHA2 . 44

7.4.3 Production of colour-/spin correlated trees 48

A Conventions 49

A.1 Conventions of golem95C . 49

A.2 Conventions of GoSam . 49

B Explicit reduction of the R2 terms 51

C The included model files 54

C.1 Format of the model files . 54

C.1.1 The Python file . 54

C.1.2 The QGraf file . 55

C.1.3 The FORM file . 55

C.2 Standard Model (sm) . 57

C.2.1 Synopsis . 57

C.2.2 Particle content . 58

C.2.3 Parameters . 59

C.3 GoSam directory structure . 59

2

1 Introduction

GoSam is a program package for the automated generation and
evaluation of one-loop amplitudes, within and beyond the Stan-
dard Model. Version 1.0 has been published in Ref. [1], version
2.0 in Ref. [2]. GoSam-2.0 can also produce spin- and colour cor-
related tree amplitudes. The program produces Fortran 95 code
for a given process by generating Feynman diagrams and translat-
ing the corresponding one-loop expressions into a form where the
integrand can be reduced and evaluated numerically with either
Ninja [3, 4, 5] or golem95C [6, 7, 8] or Samurai [9, 10]. A file
containing the pictorial represenation of the diagrams along with
other information about the process is also produced.

In this manual, shell commands (for the bash shell) are indicated
by lines starting with a dollar sign $. Lines that are broken for
type setting reasons and should continue the previous line(s) start
with a ↪→.

Python program fragments are denoted by the ‘>>>’ prompts, with
‘...’ for continuation lines.

2 Download and installation

2.1 Prerequisites

The distribution of GoSam-2.0, together with the install script,
will provide all external and auxiliary programs which are necessary
to successfully run GoSam. Therefore, the user does not have to
install any external programs manually.

The program GoSam is designed to run in any modern Unix-like
environment (Linux, Mac).
The system requirements are Python (≥ 2.6), a fortran compiler
(gfortran or ifort), a C/C++ compiler (gcc/icc), and (GNU) make.
By default, GoSam uses the gfortran/gcc compilers from the GNU
Compiler Suite. To use an Intel compiler (ifort/icc), the --intel

option can be used. Specific paths to the compilers can be provided
using the --fc, --cc, --cxx options.

2.2 Download

The GoSam-2.0 source code will be downloaded automatically by
the install script gosam installer.py. The install script can be
downloaded by
$ wget http://gosam.hepforge.org/gosam-installer/gosam installer.py

or by going to the webpage
http://gosam.hepforge.org/ and clicking on installation script.

The GoSam-2.0 package can also be downloaded manually either
via subversion or via download from the HepForge webpage.

HTTP Download

At the URL
http://www.hepforge.org/downloads/gosam/

one can download the package GoSam-2.0 as a tar-ball. one can
unpack it using the command

$ tar xzvf gosam-2.0.tar.gz

Subversion

One can check-out a working copy of the repository with the com-
mand

$ svn co http://svn.hepforge.org/gosam/branches/

↪→gosam-2.0

http://www.hepforge.org/downloads/gosam/

This will create a folder gosam-2.0 in your current directory. Au-
thenticated users can use

$ svn co svn+ssh://svn.hepforge.org/hepforge/svn/

↪→gosam/branches/gosam-2.0

to gain read and write access to the project files.

2.3 Installation

The installation of GoSam-2.0 is very simple when using the in-
stallation script. The latter can be downloaded by
$ wget http://gosam.hepforge.org/gosam installer.py

By default GoSam and the external programs it uses will be in-
stalled into a subfolder ./local of the current directory. A differ-
ent path can be specified using the --prefix=PATH where to install

option.

To run the script the user should execute the following commands
$ chmod +x gosam installer.py

$./gosam installer.py [--prefix=...]

or
$ python gosam installer.py [--prefix=...]

Upon installation, the installer will ask some questions, which are
described in detail below. To use the default installation all the
questions can be “answered” by hitting the ENTER key.

As soon as all questions are answered, the main installation process
will start. The components will be downloaded, built and installed.
The whole procedure takes about 10-30 minutes.

At the end of the installation process, a script gosam setup env.sh

will be created in the bin/ subdirectory of the install location,
which will (temporarily) set all environment variables, as soon as
the script is sourced into a shell, by
$ source [path]/gosam setup env.sh. The installer also gives a
recommendation how these environment variables can be set per-
manently. The script can be used in all tcsh- and bash-compatible
shells.

All files which have been installed are tracked in the file
installer-log.ini. Please keep this file and the install script.
They are needed to update and uninstall GoSam.

For the default installation, internet access is required.

2.3.1 Additional information about the installation process

Before the installation starts, the installer first checks if a new ver-
sion of the installation script is available on the GoSam webpage,
and if this is the case, asks if it is allowed to update the script.

Then the installer searches for existing components (QGraf, FORM).

5

If they are not found, one can either press ENTER to have them in-
stalled by the script, or provide a path to the binary (tab-completion
can be used).

If they are found, their version is checked, and if needed the in-
stallation of a version which has been tested to run with GoSam
is suggested.

All files are downloaded to the GoSam subfolder and extracted. The
build files remain on the system; they can be removed manually.

By default, GoSam uses the gfortran/gcc from the GNU Com-
piler Suite compiler. If one wants to use the compiler from Intel
(ifort/icc), the –intel option can be used. Specific paths to the
compilers can be provided using the --fc, --cc and --cxx op-
tion.

All installation options can be listed with the –help flag:
$./gosam installer.py --help

2.3.2 Updating an existing installation

To update an existing installation, the installer can be started again
without any option. It determines the install location from the file
installer-log.ini which is searched for in the current directory.
The script will look online for updates and ask if they should be
installed.

Before overwriting or deleting existing files which have been mod-
ified by the user, the installer stops. One can use the -f flag to
force the action.

2.3.3 Uninstalling

To uninstall GoSam, including the installed auxiliary libraries, the
installer needs to be started with the -u or --uninstall flag.

As in the case of updates, the install script searches for the file
installer-log.ini in the current directory.

Modified files are not deleted. Use the -f flag to force the action
of deleting them.

2.4 Description of the components

The generation of matrix element code using GoSam can be un-
derstood as a three step process.

1. diagram generation: Python and QGraf are used. This
phase is initiated by running gosam.py process.in, where
process.in contains the user input for the process to be
calculated.

6

2. code generation: only FORM and haggies are run. This
phase is initiated by $ make source.

3. compilation and running: a fortran compiler and the
chosen reduction libraries are used. This phase is initiated by
$ make compile. Please note that running make compile

will invoke make source if the latter has not been run before,
or if some of the source files are missing.

If you use the GoSam package, you should be aware that the fol-
lowing programs are used. (The numbers indicate during which
phase of the code generation the tools will be required).

QGraf [11] is required in version 3.1 or higher. The install scriptQGraf (1)
coming with GoSam will download and install QGraf automat-
ically. It can be also downloaded manually from http://cfif.

ist.utl.pt/~paulo/qgraf.html.

The program has been tested with Python versions 2.6 and 2.7.Python (1)

FORM [12, 13] version 4.0 or higher is required to profit from allFORM (2)
optimisation features. FORM is distributed with the GoSam-2.0
package for the user’s convenience. For manual download, FORM is
available from http://www.nikhef.nl/~form/.

The code generator haggies [14] is also included in the GoSam dis-haggies (2)
tribution already. Alternatively, it can also be obtained separately
from the URL http://sourceforge.net/projects/haggies/.
haggies requires Java in version 1.5 or higher.

For one-loop calculations, at least one of these three libraries isNinja/golem95C/Samurai
(3) required. The libraries are already distributed with the code and

compiled by the install script. Alternatively,

• golem95C can be downloaded from
https://golem.hepforge.org.

• Samurai can be downloaded from
http://samurai.hepforge.org.

• Ninja can be downloaded from
http://ninja.hepforge.org.

The generation of documentation (optional) is based on the LATEX-refrep.cls (3)
class refrep, which may not be present in all LATEX distributions.
It can be downloaded from http://www.ctan.org/ as part of the
refman package. This file is only needed if one intends to run
make doc, which generates some documentation like drawing the
diagrams, listing the colour structures, etc.

Please note that some of these programs may have license policies! →
which are different from the license applying to GoSam. The au-
thors of GoSam do not take any responsibility for any problems
related to the above mentioned software packages.

7

http://cfif.ist.utl.pt/~paulo/qgraf.html
http://cfif.ist.utl.pt/~paulo/qgraf.html
http://www.nikhef.nl/~form/
http://sourceforge.net/projects/haggies/
https://golem.hepforge.org
http://samurai.hepforge.org
http://ninja.hepforge.org
http://www.ctan.org/

3 Setup of a process

GoSam can be used either as a standalone code producing one-
loop (and tree level) amplitudes, or it can be used as a One Loop
Provider (OLP) in combination with a Monte Carlo program. The
usage in the latter case is described in detail in Section 7. Below
we will first describe the setup for the standalone version.

In order to generate the matrix element for a given process, the
user should create a process specific setup file, which we call process
card.

Before we give a commented list of all possible entries in a process
card, we should emphasize that almost all specifications in the pro-
cess card are options, which will take default values if they are not
filled in by the user. The paths to the libraries will be inserted au-
tomatically by the install script. The only mandatory fields are the
in and out particles, the perturbative order and the path where to
store the process files. Therefore, a minimal process card can look
like this:

Listing 3.1: eett.in

1 process_path=eett

2 in= e+, e-

3 out= t, t~

4 order= gs , 0, 2

3.1 Example: e+e− → tt̄ at NLO in QCD

It is recommended to generate and modify a template file for the
process card instead of starting from scratch. This can be done by
invoking the shell command

$ gosam.py --template eett.in

This generates the file eett.in with some documentation for all
defined options. Some options, e.g. the paths to the reduction
libraries, have been set by the installation script. The other options
are filled with some default values, which also can be changed either
in the individual process cards, or in a global configuration file1.

In the following example it is assumed that the process e+e− → tt̄
should be calculated to order O(ααs) (virtual QCD corrections).

1 For the latter, the script will search (in this order) in the GoSam directory,
in the user’s home directory and in the current working directory for a file
named ‘.gosam’ or ‘gosam.in’. If one needs to adapt paths by hand, such a
file can be generated with the command $ gosam-config.py > gosam.in

We neglect the exchange of a Z or a Higgs boson and treat the
electron as massless. The output directory is assumed to be in the
relative path eett.

Listing 3.2: eett.in

1 process_name=eett

2 process_path=eett

3 in= e+, e-

4 out= t, t~

5 model= smdiag

6 model.options=ewchoose

7 order= gs , 0, 2

8 zero=me

9 one=gs ,e

10 regularisation_scheme=dred

11 helicities=

12 qgraf.options=onshell ,notadpole ,nosnail

13 qgraf.verbatim= true=iprop[Z, 0, 0];\n\

14 true=iprop[H, 0, 0];

15 qgraf.verbatim.lo=

16 qgraf.verbatim.nlo=

17 polvec=numerical

18 diagsum=True

19 reduction_programs=ninja ,golem95 ,samurai

20 extensions=shared

21 debug=nlo

22 select.lo=

23 select.nlo=

24 filter.lo=

25 filter.nlo=

26 filter.module=

27 renorm_beta=True

28 renorm_mqwf=True

29 renorm_decoupling=True

30 renorm_mqse=True

31 renorm_logs=True

32 renorm_gamma5=True

33 reduction_interoperation =-1

34 reduction_interoperation_rescue =-1

35 samurai_scalar =2

36 nlo_prefactors =0

37 PSP_check=True

38 PSP_rescue=True

39 PSP_verbosity=False

40 PSP_chk_th1 =8

41 PSP_chk_th2 =3

42 PSP_chk_th3 =5

43 PSP_chk_kfactor =10000

44 PSP_chk_li1 =16

9

45 PSP_chk_li2 =7

46 PSP_chk_li3 =6

47 PSP_chk_li4 =19

48 PSP_chk_method=Automatic

49 reference -vectors=

50 abbrev.limit =0

51 templates=

52 qgraf.bin=qgraf

53 form.bin=form

54 form.threads =2

55 form.tempdir =/tmp

56 haggies.bin=

57 fc.bin=/usr/bin/gfortran

58 python.bin=python

59 ninja.fcflags=

60 ninja.ldflags=

61 samurai.fcflags=

62 samurai.ldflags=

63 golem95.fcflags=

64 golem95.ldflags=

65 r2=explicit

66 symmetries=family ,generation

67 crossings=

The comments to the file eett.in are as follows.

1 Setting a process name is optional but recommended. All
module names will be prefixed with the process name (e.g.
precision → eett precision). This will avoid name con-
flicts if at a later stage more than one matrix elements are
linked into one executable.

2 The item process path specifies the directory to which all
generated files and directories are written. If the subdirec-
tory with the name specified under process path does not
exist, GoSam will create it. Specification of a process path
is mandatory.

3–4 The items in and out specify the particles of the initial and
final state. The particle names must be defined in the selected
model file. As the model files usually define mnemonics for
the particle names there might be several ways of specifying
the same process. Instead of ‘e+’ one could have written
‘ep’ or ‘positron’. For a complete list of alternative particle
names please refer to the documentation of the corresponding
model file.
Specifying in and out particles is mandatory.

5 The option model specifies which model files should be used
in order to generate and evaluate the diagrams. How to im-
port models in UFO or LanHep format is described in section

10

3.5. The default for this field is smdiag, i.e. the built-in
Standard Model file with a diagonal CKM matrix.

6 The option model.options can be used to pass options which
are specific to a certain model. The default is ewchoose,
which means that the electro-weak scheme is selected au-
tomatically according to the given input parameters. Note
that this option also allows to set values of masses, widths
etc. For example, model.options = mB=4.19,w*=0 defines
massive b-quarks and sets all widths to zero.

7 The item order is a comma separated list with three entries.
The first entry specifies a symbol that denotes a coupling con-
stant. With the Standard Model files sm*, the possibilities are
‘gs’ or (equivalently) ‘QCD’ for the strong coupling constant
gs and ‘e’ or ‘gw’ or ‘QED’ for the electroweak coupling (the
latter three are equivalent in what concerns the counting of
orders in the electroweak coupling). The keywords ‘QCD’ and
‘QED’ also can be used to calculate QCD resp. electroweak
corrections to BSM processes.
The second number is the power of the chosen coupling con-
stant for the tree-level diagrams and the third number spec-
ifies the power of that coupling constant for the one-loop
diagrams. Note that the numbers refer to the powers in the
diagrams of the amplitude rather than the squared ampli-
tude. In the above example the string ‘gs, 0, 2’ specifies
that the tree-level diagrams should be of order g0

s and the
one-loop diagrams should be of order g2

s and an unspecified
power of e in both cases. If there is no tree level, i.e. the
process is loop induced, the keyword NONE should be put as
second item in the list, instead of the tree level power of the
coupling.
The values of order are translated into a vsum constraint in
the file qgraf.dat.
This field is mandatory.

8–9 The keywords zero and one specify a set of symbols that
should be treated as zero (resp. one). These simplifications
are applied at the symbolical level. Only symbols that ap-
pear in the FORM interface of the model file should be specified
here (masses, couplings, CKM-matrix elements, etc). In the
example we specify the electron mass ‘me’ to be zero and we
do not keep the coupling constants in the calculation explic-
itly (gs = e = 1).
These options can be omitted.

10 The option regularisation scheme allows to choose the di-
mensional regularisation scheme, in our example dred for
dimensional reduction, which is the default. cdr for “con-
ventional dimensional regularisation” is also possible.

11

11 helicites: a comma separated list of helicities to be calcu-
lated. An empty list means that all possible helicities should
be generated. The characters correspond to particles 1, 2, ...
from left to right.
Example: e+e− → γγ:
Only three helicities are required; the other ones are either
zero or can be obtained by symmetry transformations. This
corresponds to
helicities=+-++,+-+-,+---

Multiple helicities can be encoded in patterns, which are ex-
panded at the time of code generation. Patterns can have
one of the following forms: [+-], [+-0], [+0] etc. : the
bracket expands to one of the symbols in the bracket at a
time.
Example:
helicities=[+-]+[+-0] expands to 6 different helicities:
helicities=+++, ++-, ++0, -++, -+-, -+0 .
[a=+-], etc. : as above, but the helicity is also assigned to
the symbol and can be reused.
Example:
helicities=[i=+-]+i+ expands to two helicities:
helicities=++++, -+-+ .
[ab=+-0], etc. : as above, the first symbol is assigned the
helicity, the second is minus the helicity
Example:
helicities=[qQ=+-][pP=+-]PQ[+-0] expands to 12 helic-
ities:
helicities=++--+,++---,++--0,+-+-+,+-+--,+-+-0,

-+-++,-+-+-,-+-+0,--+++,--++-,--++0 .

12 qgraf.options=onshell,notadpole,nosnail: a list of op-
tions which is passed to QGraf via the ’options’ line. Possible
values (as of QGraf 3.1.4) are the following keywords: onepi,
onshell, nosigma, nosnail, notadpole, floop, topol.
In our example, it means that external lines are on-shell,
i.e. do not contain selfenergy corrections, and that tadpole
and snail diagrams are discarded. This is also the default
if qgraf.options is not specified. We refer to the QGraf

documentation for more details.

13-16 The value of the option qgraf.verbatim is passed verba-
tim to the file qgraf.dat. In our example we suppress the
generation of diagrams containing Higgs and Z bosons. As
these commands are passed verbatim to QGraf, no mnemonic
names are allowed here, e.g. the Higgs particle has to be de-
noted by ‘H’ and cannot be replaced by ‘h’. For a complete
list of available options, please consult the QGraf manual.
For a complete list of particle names we refer to the docu-
mentation of the corresponding model file.
These options can be omitted.

12

17 polvec: by default (polvec=numerical), numerical polari-
sation vectors are used for the massless gauge bosons, rather
than producing separate code for each helicity (see section
3.3.3). To switch off the use of numerical polarisation vec-
tors, use polvec=explicit.

18 diagsum: if True, one-loop diagrams sharing some propaga-
tors are combined before the algebraic reduction. The default
is diagsum = True.

19 The option reduction programs allows to choose the ampli-
tude reduction method. If several choices are given, the code
is produced such that the reduction methods can be switched
at runtime. The default is ninja,golem95.

20 extensions: this option contains a list of useful extensions to
the core of the program, which operate at the code generation
stage. The currently available extensions are

• autotools: use autotools to generate Makefiles

• shared: create shared libraries (i.e. dynamically link-
able code rather than static libraries). This extension is
enabled by default when using the autotools extension.

• f77: in combination with the BLHA interface it gener-
ates a file olp module.f90 linkable with Fortran77.

• noformopt: disables diagram optimization using FORM

• gaugecheck: modifies the massless gauge boson wave
functions to allow for a check of gauge invariance for
processes involving gluons or photons.

• customspin2prop allows to replace the propagator of
spin-2 particles with a custom function (we refer to sub-
section 3.5.3 for details).

In our example shared tells the program to build dynamic
rather than static libraries.

21 debug: can take the values lo, nlo, all. It sets the level
of information printed to the file matrix/debug.xml when
running the test program.

22 select.lo: can be used to select/discard diagrams by their
diagram numbers. It can contain a list of integer numbers,
indicating leading order diagrams to be selected. If no list
is given, all diagrams are selected. Otherwise, all diagrams
whose numbers are not in the list will be discarded. The
list may also contain ranges, with increments different from
one, e.g. select.lo=1,2,5:10:3, 50:53 is equivalent to
select.lo=1,2,5,8,50,51,52,53, i.e. the 3 in 5:10:3 is
the increment.

13

23 select.nlo: analogous to select.lo, for the one-loop dia-
grams.

24 filter.lo: a python function which provides a filter for tree
diagrams. Example:
filter.lo=lambda d: d.iprop(Z) == 1 and d.vertices(Z,

U, Ubar) == 0 filters out diagrams containing exactly one
Z propagator and no Zuū couplings.

25 filter.nlo: analogous to filter.lo, for the one-loop dia-
grams. For details we refer to subsection 6.3.

26 filter.module: a python file of predefined functions which
can be used as filters.

27 renorm beta: activates or disables beta function renormali-
sation. The default is True.

28 renorm mqwf: activates or disables UV countertems coming
from external massive quarks. The default is True.

29 renorm decoupling: activates or disables UV counterterms
coming from massive quark loops. The default is True.

30 renorm mqse: activates or disables the UV counterterm com-
ing from the massive quark propagators. The default is True.

31 renorm logs: activates or disables the logarithmic finite terms
associated with the UV counterterms. The default is True.

32 renorm gamma5: activates finite renormalisation for axial cou-
plings in the ’t Hooft Veltman scheme (CDR). Implemented
for QCD only, works only with the built-in model files. The
default is True.

33 reduction interoperation: denotes the reductuion libraries
to be used. Possible values are: ninja, samurai, golem95 (list-
ing all of them simultaneously is possible). A value of -1 lets
GoSam decide. See common/config.f90 for details.

34 reduction interoperation rescue: specifies the reduction
library to be used to rescue ‘unstable points’. A value of -1
lets GoSam decide.

35 samurai scalar: integer which specifies the library Samu-
rai chooses for the basis integrals. 1: QCDLoop, 2: OneLOop,
3: golem95C. The default is 2.

36 nlo prefactors: can take the integer values 0,1,2, which
have the following meaning:

0 : a factor of α(s)/(2π) is not included in the NLO result

1 : a factor of 1/(8π2) is not included in the NLO result

2 : the NLO result includes all prefactors (see also section
A).

14

Note, however, that the factor of 1/Γ(1 − ε) is not included
in any of the cases. Please note also that nlo prefactors=0

is enforced in test.f90 in order to recognize rational num-
bers for the pole coefficients. In the OLP interface mode
(BLHA/BLHA2), the default is nlo prefactors=2.

37 PSP check: allows to switch the stability test of the full am-
plitude for each phase space point on or off. If PSP check is
set to False, the following flags concerning PSP rescue and
the various thresholds for the rescue system have no effect.
Details about the stability tests are given in the GoSam-2.0
paper. Please note that this test only works for QCD with
the built-in model files. The default is PSP check= True.

38 PSP rescue: activates the phase space point rescue system
based on the estimated accuracy. The accuracy is estimated
using information on the single pole accuracy and information
from the rotation test. The default is PSP rescue= True.

39 PSP verbosity: sets the verbosity of the PSP check. verbosity
= False means no output, verbosity = True means that
bad points are written to a file
gs badpts.log. The default is verbosity = False.

40 PSP chk th1: an integer indicating the number of desired
accurate digits of the single pole coefficient. For poles coeffi-
cients more precise than this threshold the finite part is not
checked separately. Note that this works only for QCD, with
the built-in model files. The default is 8.

41 PSP chk th2: threshold (number of accurate digits) to de-
clare a phase space point as bad point, based on the precision
of the pole coefficient. Points with precision less than this
threshold are directly reprocessed with the rescue system (if
available), or declared as unstable. According to the ver-
bosity level set, such points are written to a file and not used
when the code is interfaced to an external Monte Carlo pro-
gram using the new BLHA2 standards. The default is 3.

42 PSP chk th3: threshold (number of accurate digits) to de-
clare a phase space point as bad point, based on the precision
of the finite part estimated with a rotation. According to the
verbosity level set, such points are written to a file and not
used when the code is interfaced to an external Monte Carlo
program using the new BLHA2 standards. The default is 5.

43 PSP chk kfactor: threshold on the K-factor to declare a
phase space point as bad point. According to the verbosity
level set, such points are written to a file and not used when
the code is interfaced to an external Monte Carlo program
using the new BLHA2 standards. The default is 1000.

44 PSP chk li1: sets the same variable in config.f90. For loop-

15

induced processes, it is used instead of PSP chk th1. It is the
precision of the pole part (which should be zero) in compari-
son to the finite part. If the pole part is at least PSP chk li1

orders smaller than the finite part, the point is accepted with-
out any further check. The default is 16. If Samurai is used
as default reduction program, it should be reduced to 8. It
works normally only for QCD and with built-in model files.

45 PSP chk li2: sets the same variable in config.f90. For loop-
induced processes, it is used instead of PSP chk th2. It is the
threshold to declare a phase space point as bad point, based
on the precision of the pole in comparison to the finite part.
Points with precision less than this threshold are directly
reprocessed with the rescue system (if available), or declared
as unstable. According to the verbosity level set, such points
are written to a file and not used when the code is interfaced
to an external Monte Carlo using the new BLHA standards.
If Samurai is used as default reduction program, it should be
be reduced to 6. The default is 7.

46 PSP chk li3: sets the same variable in config.f90. For loop-
induced processes, it is used instead of PSP chk th3. It is the
threshold to declare a PSP as bad point, based on the preci-
sion of the finite part estimated with a rotation test. Points
with precision less than this threshold are reprocessed with
the rescue system (if available) or declared as unstable. Ac-
cording to the verbosity level set, such points are written to
a file and not used when the code is interfaced to an external
Monte Carlo using the new BLHA standards. The default
value is 6.

47 PSP chk li4 Sets the same variable in config.f90. Similar to
PSP chk li2, but for the rescue system (by default Golem95).
It is the threshold to declare a PSP as bad point in the rescue
system, based on the precision of the pole part in comparison
to the finite part. According to the verbosity level set, such
points are written to a file and not used when the code is
interfaced to an external Monte Carlo using the new BLHA
standards. The default value is 19.

48 PSP chk method: this option can be used to overwrite the au-
tomatic precision test method enabled with PSP check=True.
Except for some BSM scenarios, the user does not need to
change this. Possible options are

• Automatic – chooses automatically a suitable phase-
space point test

• PoleRotation – checks first the pole and then rotates
if necessary.

• Rotation – forces a rotation check on every phase space

16

point (slow).

• LoopInduced – checks that the pole part is zero and ro-
tates if necessary. Needed e.g. for interference between
BSM Born and SM loop-induced virtual.

49 reference-vectors: comma separated list of reference vec-
tors for massive fermions and vector bosons. If no reference
vectors are assigned here, the program picks the reference
vectors automatically. Each entry of the list has to be of the
form 〈index〉 : 〈index〉. Example:
in=g,u

out=t,W+

reference-vectors=1:2,3:4,4:3

In this example, the gluon (particle 1) takes the momentum
k2 as reference momentum for the polarisation vector. The
massive top quark (particle 3) uses the light-cone projection
l4 of the W-boson as reference direction for its own momen-
tum splitting. Similarly, the momentum of the W-boson is
split into a direction l4 and one along l3.

50 abbrev.limit: maximum number of instructions per subrou-
tine when calculating abbreviations. The default is 0, which
means that no maximum is set.

51 templates: Path pointing to the directory containing the
template files for the process. If not set, the program uses
the directory 〈 gosam path〉/templates. The directory must
contain a file called template.xml.

52 qgraf.bin: path to the QGraf executable. The default path
will be set by the installation script.

53 form.bin: path to the FORM executable. The default path
will be set by the installation script.

54 form.threads: the number of FORM threads when using tform,
the parallel version of FORM. The default is 2.

55 form.tempdir: the temporary directory where FORM can store
(large) intermediate files. the default is /tmp.

56 haggies.bin: path to the haggies executable. The default
path will be set by the installation script.

57 fc.bin: path to the Fortran compiler. The default path will
be set by the installation script.

58 python.bin: path to the python executable. The default
path will be set by the installation script.

59 ninja.fcflags: compiler flags to compile with Ninja. The
default will be set by the installation script.

17

60 ninja.ldflags: LDFLAGS required to link the Ninja li-
brary. The default will be set by the installation script.

61 samurai.fcflags: compiler flags to compile with Samurai.
The default will be set by the installation script.

62 samurai.ldflags: LDFLAGS required to link the Samurai
library. The default will be set by the installation script.

63 golem95.fcflags: compiler flags to compile with golem95C.
The default will be set by the installation script.

64 golem95.ldflags: LDFLAGS required to link the golem95C
library. The default will be set by the installation script.

65 r2: treatment of the rational part R2. The possibilities are

• implicit: µ2 terms are kept in the numerator and re-
duced at runtime

• explicit: µ2 terms are reduced analytically

• off: all µ2 terms are set to zero.

The default is r2=explicit.

66 symmetries: this information is used when the list of helicity
configurations is generated. An empty list means that all
helicity configurations will be generated, even if some of them
could be mapped onto each other. Possible values are:

• flavour: assumes that no flavour changing interactions
are present. When calculating the list of helicities, fermions
with PDG codess 1-6 are assumed not to mix.

• family: flavour changing only within families. When
calculating the list of helicities, fermion lines with PDG
codes 1-6 are assumed to mix only within families, i.e.
a quark line connecting an up with a down quark would
be considered, while up-bottom would be discarded.

• lepton: means for leptons what ’flavour’ means for
quarks

• generation: means for leptons what ’family’ means for
quarks

• 〈n〉 = 〈h〉: restriction of particle helicities, e.g. 1=-,

2=+ specifies helicities of particles 1 and 2

• %〈n〉 = 〈h〉 restriction by PDG code, e.g. %23=+-
specifies the helicity of all Z-bosons to be ’+’ and ’-’
only (no ’0’ polarisation).
%〈n〉 refers to both +n and −n
%+〈n〉 refers to +n only, %-〈n〉 refers to −n only

18

67 crossings: a list of crossed processes derived from this pro-
cess. For each process in the list a module similar to matrix.f90
is generated. Example:
process name=ddx uux

in=1,-1

out=2,-2

crossings=dxd uux: -1 1 → 2 -2, ud ud: 2 1 → 2 1

In order to populate the specified process directory with files one
invokes

$ gosam.py eett.in

3.2 Process directory structure

After running gosam.py with an appropriate setup file, the process
directory contains a number of files which are described below.

This directory contains files which are only relevant for code ge-codegen/

neration. These files will therefore not be included in a tar-ball
created with make dist.

Contains Fortran files which are common to all helicity amplitudescommon/

and to the constructed matrix element code. The file config.f90

contains some global settings, the file model.f90 contains the def-
initions and settings for the model parameters. This directory is
always compiled first.

Contains all files (apart from pyxotree.tex and pyxovirt.tex)doc/

which are necessary for creating doc/process.pdf, which lists all
Feynman diagrams of this process, together with colour and helicity
information.

These directories contain all files for a specific helicity amplitudehelicity[i]

(labelled by i). The labeling of the helicities can be found in
doc/process.pdf. Note that the code will automatically map
equivalent helicity configurations onto one single helicity and per-
form the corresponding book-keeping.

Before invoking make source, this directory only contains the make-
files. After the full code generation, for each diagram three classes
of files are created: The basic algebraic expressions for the individ-
ual one-loop diagrams are contained in the files d*h*l1.txt in an
optimized format. The files d*h*l1.prc contain the expressions of
the numerators as polynomials in the loop momentum. The cor-
responding Fortran files are d*h*l1.f90 and abbrevd*h*.f90,
where the latter contains the abbreviations.

Files generated with the derive option are named d*h*l1d.*,
while the input files for Ninja are named d*h*l1*.*. In more
detail, the three categories of files are named as follows:
Diagrams:

19

d*h*l1.prc

d*h*l1.txt

d*h*l1.f90

abbrevd*h*.f90

Derive:

d*h*l1d.hh

d*h*l1d.txt

d*h*l1d.f90

Ninja:

d*h*l1.hh

d*h*l12.txt

d*h*l13.txt

d*h*l14.txt

d*h*l1mu2.txt

d*h*l121.f90

d*h*l131.f90

d*h*l132.f90

This folder contains the code to combine the helicity amplitudesmatrix

into a matrix element. Here one also finds the test program test.f90.
This folder is always compiled last.

Contains model specific definitions needed by the FORM code whichmodel.hh

is generating the symbolic expressions for the amplitude. The orig-
inal files from the model/ directory of GoSam. are renamed, e.g.
sm → model, sm.hh → model.hh.

The diagram files generated by QGraf.diagrams-[01].hh

This script facilitates linking with external programs. For details,config.sh

run $ sh ./config.sh -help.

This files contains the settings which are global for all helicity con-Makefile.conf

figurations, like e.g. the paths to the reduction libraries, compiler
options, etc.

Makefile.source is used when calling make source. RunningMakefile

Makefile.source make from the process directory will pass through all subdirectories.
The following targets of make are available for direct use:

help : lists all major targets.

source : generate source files, mainly Fortran 95 files.

compile : compile the Fortran 95 sources.

dist : create a tar-ball of the source files.

clean : remove object files and intermediate files.

very-clean : remove files including targets of make source.

doc : create various documents related to the process. To obtain a
description of the topologies, you need to run source before

20

make doc.

3.3 Code generation and compilation

The Fortran 95 code is generated by the command

$ make source

and can be compiled using

$ make compile

Please note that the compile target invokes the source target if
necessary. By using the make command line option -j JOBS one
can parallelize this.

A simple test program, which gives the value of the amplitude
at a randomly generated phase space point, can be found in the
directory matrix/. In order to compile and run it, type

$ cd matrix

$ make test.exe

$./test.exe

The program will generate a file debug.xml, which, depending on
the settings, contains the values of individual helicity amplitudes
and diagrams for the set of phase space points used in test.f90.

3.3.1 Producing optimised code with FORM version 4

The constant, i.e. q- and µ2-independent parts of the numerators
of the one-loop diagrams are factored out from the numerators and
computed as abbreviations.

While in version 1.0 of GoSam the Fortran code for the ampli-
tudes was written using haggies [14], we now largely use the fea-
tures provided by FORM version 4.x [13] to produce optimized code.
This leads to more compact code and a speed-up in amplitude eval-
uation of about a factor of ten. The option to use haggies is still
available by setting the extension noformopt.

In the case where haggies instead of FORM version 4 is used to pro-
duce abbreviations, i.e. if extensions=noformopt is used, please
note the following: if the list of abbreviations causes haggies to
crash, one needs to increase the amount of memory reserved for
Java. This can be done by adding the -Xmx option to the call of
Java. A typical setting of the variable haggies.bin would be

haggies.bin=java -Xmx3g -jar

↪→ ${GOSAMPATH}/haggies/haggies.jar
which assigns 3 GB of memory to Java.

In some cases the list of abbreviations is too big to be compiled
into one subroutine. One can restrict the number of instructions for

21

haggies that go into a single subroutine by setting abbrev.limit

to a positive number in the process card.

3.3.2 Grouping/summing of diagrams which share common subdiagrams

Already in the first release of GoSam, the diagrams were analyzed
according to their kinematic matrix Sij and grouped together be-
fore reduction. These lead to an important gain in efficiency, both
when using integrand reduction methods, as well as classical tensor
reduction techniques. Details about the way diagrams are grouped
can be found in [1]. This feature is still present when Samurai or
golem95C are used to reduce the amplitudes.

In release 2.0 an option called diagsum combines diagrams which
differ only by a subdiagram into one “meta-diagram” to be pro-
cessed as an entity. This allows to further reduce the number of
calls to the reduction program and therefore to increase the com-
putational speed.

3 Colour Basis

|c1〉 = 1q
(1)
i1

q
(2)
i2

q̄
(1)
i1

q̄
(2)
i2

(13)

|c2〉 = 1q
(1)
i1

q
(2)
i2

q̄
(2)
i2

q̄
(1)
i1

(14)

4 BLABLA

4.1 Group 9 (5-Point)

General Information

The maximum effective rank in this group is 5.

4.1.1 Diagrams

d(k1)

d(k2)

µ−(k3)

µ+(k4)

d(k5)

d(k6)

g
γ

d
d

g

d

(A)

d(k1)

d(k2)

µ−(k3)

µ+(k4)

d(k5)

d(k6)

g

Z

d
d

g

d

(B)

d(k1)

d(k2)

µ−(k3)

µ+(k4)

d(k5)

d(k6)

g
γ

d
d

g

d

(C)

d(k1)

d(k2)

µ−(k3)

µ+(k4)

d(k5)

d(k6)

g

Z

d
d

g

d

(D)

4

Figure 3.1: Example of diagrams sharing a common tree
part, which are summed when the diagsum option is set to
diagsum=true.

When the option diagsum is active, diagrams which differ only
by a propagator external to the loop, as is the case e.g. for the
Z/γ? propagator in QCD corrections to the production of Z+jets,
are summed together before being processed by FORM. Similarly,
diagrams which differ only by an external tree part, but which share
exactly the same set of loop propagators, are summed together
prior the algebraic manipulation. An example is shown Figure 3.1.

22

d(k1)

d(k2)

µ−(k3)

µ+(k4)

d(k5)

d(k6)

γ

g

d

g

u

u

(A)

d(k1)

d(k2)

µ−(k3)

µ+(k4)

d(k5)

d(k6)

γ

g

d

g

ug

ug

(B)

d(k1)

d(k2)

µ−(k3)

µ+(k4)

d(k5)

d(k6)

γ

g

d

g

g

g

(C)

5

Figure 3.2: Example of diagrams sharing a common loop propa-
gator, but with different particle content in the loop, which are
summed when the diagsum option is set to diagsum=true.

Finally, diagrams which share the same set of propagators, but have
different particles circulating in the loop, as shown in Figure 3.2,
are also summed into one “meta-diagram”. The default setting for
this option is diagsum=true.

Grouping of Tree Level Diagrams By default the expressions
of all tree-level diagrams are grouped into one file. This has the
advantage that subexpressions which appear in several tree-level
diagrams can be reused across the amplitude. In some cases it can
happen that the sum of all terms of the tree-level diagrams is too
big to be compiled in one subroutine. In this case it is recom-
mended to set the option group to false. However, the latter can
only be used in combination with the extension noformopt.

3.3.3 Numerical polarisation vectors

The use of numerical polarisation vectors for massless gauge bosons
(gluons, photons) is activated by default. This means that the vari-
ous helicity configurations for the massless bosons will be evaluated
numerically, based on the same code, rather than producing sepa-
rate code for each helicity configuration. In order to switch off this
default setting, for example if the user would like to optimize the
choice of reference vectors for each helicity configuration, the option
polvec=explicit should be given in the process card process.in.
In this case, GoSam will choose explicit reference vectors automat-
ically. If the user wants to specify his/her preferred reference vec-
tors, this can be done using the option reference-vectors=...

in the process card.

3.3.4 The extension derive

The derive feature generates code to access the tensor coefficients
of each diagram or group of diagrams individually. While it has
been among the possible keywords for the extensions option in
GoSam-1.0 already, it now has been promoted to be used by de-
fault in the context of tensorial reconstruction [15]. It improves

23

both the speed and the precision of tensorial reconstruction and
makes connection to other reduction methods.

The idea behind it is to compute the numeratorN (q̂) from a Taylor
series

N (q̂) = N (0) + q̂µ
∂

∂q̂µ
N (q̂)|q=0 +

1

2!
q̂µq̂ν

∂

∂q̂µ

∂

∂q̂ν
N (q̂)|q=0 + . . .

(3.1)
In this form one can read off a one-to-one correspondence between
derivatives at q̂ = 0 and the coefficients of the tensor integrals.

At a technical level, the files helicity*/d*h*l1d.f90 contain the
routines derivative(µ2, [i1], [i2],...) and
reconstruct d*(coeffs), where the latter is only generated in
conjunction with the extension golem95, and coeffs is a type
which comprises all coefficients of a diagram of a certain rank. The
number of optional indices i1, i2, . . . determine which derivative
should be returned. The subroutine reconstruct d* also takes
into account the proper symmetrisation.

3.3.5 Customization

Runtime parameters. Many settings can be changed without
recompiling the code, by creating and modifying a file matrix/param.dat.
This file has a very simple format:

• Lines starting with a comment character (‘!’, ‘#’, ‘;’) in the
first column and blank lines are ignored.

• All other lines have the format

name = float

or
name = float, float

where the first line defines a real number and the second line
defines a complex number, and name is a defined parameter.

• Whitespace is ignored but must not appear inside names or
literals. Physical lines can not be continued nor can multiple
entries appear on one line.

The list of recognized names can be found in the file common/model.f90.
With the built-in Standard Model file (sm) one can re-set, for ex-
ample, the value for the Higgs mass by mH = 125.5. All model
constants that have not been specified as zero or one can be set in
this way. In addition there are some model independent parameters
which can be found in the file common/config.f90.

Compile time parameters. Other configuration options can be
found in the file common/config.f90. Examples of options con-

tained in config.f90 are

24

ki the floating point kind used throughout the calculation,
the default is double precision.

debug lo diagrams controls if information about the tree level diagrams is
written to the output file.

debug nlo diagrams controls if information about the loop-diagrams is written
to the output file.

include eps terms controls if terms of order ε multiplying poles are taken
into account.

include eps2 terms controls if terms of order ε2 multiplying double poles are
taken into account.

include color avg factor controls if the color averaging factor for inital state par-
tons is multiplied to the final result.

include helicity avg factor controls if the helicity averaging factor for inital state
particles is multiplied to the final result.

include symmetry factor controls if the symmetry factor for identical final state
particles is multiplied to the final result.

use sorted sum controls if the diagrams are summed using the algorithm
Malcolm [16], which reduces the error accumulated in
presence of large cancellations.

tens rec by derivatives controls whether the tensorial reconstruction method is
used.

3.4 Drawing the Feynman diagrams

In order to print out the diagrams the makefile contains the target
doc which produces the file process.pdf. We use LATEX plus the
package axodraw [17] to create the graphical representation.

The layout of the diagrams is determined by the algorithm used
in feynMF [18], modelling the propagators by springs. The imple-
mented algorithm works in two steps: first, the topology is con-
structed by ordering the external legs such that the diagram can
be drawn as a planar graph. The coordinates ek of the external
legs are fixed along a contour around the drawing area. In a sec-
ond step the remaining degrees of freedom, the coordinates of the
vertices vi = (xi, yi), are fixed by minimizing the Lagrangian

L(v1, . . . , vn; e1, . . . , eN) =

1

4

n∑
i,j=1

tij (vi − vj)2 +
1

2

n∑
i=1

N∑
k=1

λik (vi − ek)2 (3.2)

Here, n is the number of vertices and N is the number of external
legs. Minimization of the Lagrangian leads to a system of linear

25

equations, which can easily be solved.

∂L

∂vr
= 0

⇔1

2

n∑
i,j=1

tij (vi − vj) · (δir − δjr) +
n∑
i=1

N∑
k=1

λik (vi − ek) · δir = 0

⇔Mrjvj ≡
n∑
j=1

trj (vr − vj) +

(
N∑
k=1

λrk

)
vr =

N∑
k=1

λrkek

In the last step we used the symmetry of tij . The matrix M can
be written as

Mrc =

{ (∑
i 6=r tri

)
+
(∑N

k=1 λrk

)
, r = c

−trc, otherwise
(3.3)

The symbol tij is the sum of the spring constants of all propagators
connecting vertices i and j; similarly, λik is the spring constant of
the leg k if it is connected to vertex i and zero otherwise.

3.5 Import of model files

The GoSam-2.0 package comes with the built-in model files sm,
smdiag, smdiag mad, smehc, smdiagehc, sm complex, smdiag complex,
where the latter two are needed in the case of complex masses and
couplings, see section 5.2. The model files smdiag mad contain
some MadGraph5 specific settings, while the model files smehc and
smdiagehc contain the effective Higgs-gluon couplings.

Other models can be imported most easily in the UFO (Universal
FeynRules Output) [19] format. The model import in the UFO

format can be used in the standalone as well as the OLP mode
of GoSam, where both the BLHA1 and BLHA2 standards are
supported for the syntax of the model import.

Examples about how to import model files can be found in the
subdirectory examples.

3.5.1 Import from FeynRules

A model description in the UFO [19] format consists of a Python

package stored in a directory. In order to import the model into
GoSam one needs to set the model variable specifying the keyword
FeynRules in front of the directory name. For example, if the
Python model files for the MSSM are in the directory
$HOME/models/MSSM UFO, the process card must contain the line

model= FeynRules,$HOME/models/MSSM UFO

26

3.5.2 Import from LanHEP

In order to use model files generated by LanHEP the following
steps have to be taken:

1. When generating the tables using LanHEP, one should in-
clude the following option to ensure that the generated tables
have the correct headings2. The number of spaces in the col-
umn headers are irrelevant as long as the columns are wide
enough to contain the respective values.

prtcformat

fullname: ’ fullname ’,

name: ’ name ’,

aname: ’ aname ’,

spin2: ’ spin2 ’,

mass: ’ mass ’,

width: ’ width ’,

color: ’ color ’,

aux: ’ aux ’,

texname: ’ texname ’,

atexname: ’ atexname ’,

pdg: ’ pdg ’.

2. If the model file is not already equipped with pdg codes the
user might want to use the prtcprop command in LanHEP
to add the relevant codes.

3. In the setup file, one needs to specify the model as a pair of
path and integer number. If the table files are under the di-
rectory lanhep/ued/ in the tables func7.mdl, lgrng7.mdl,
prtcls7.mdl and vars7.mdl, the correct statement in the
setup file would be

model=lanhep/ued, 7

4. The use of user defined functions (external func in Lan-
HEP) requires an adaption of the file codegen/haggies-l0.in.
If one wants to use the function double foo(double,double)

the following line sould be added.

@define mdlfoo : real, real -> real =

"foo(%2$s, %3$s)";

The function also needs to be declared in codegen/functions.out

in the subroutine init functions

2 GoSam relies on the column names rather than some specific order.

27

3.5.3 Propagators for spin-2 particles

The propagator for massive spin-2 particles can be split into two
parts

i∆µν,ρσ(k,m~n) =
i

k2 −m2
~n + iε︸ ︷︷ ︸

D(k2,m~n)

Bµν,ρσ(k,m~n) , (3.4)

where Bµν,ρσ carries the Lorentz structure

Bµν,ρσ(k,m) =

(
ηµρ −

kµkρ
m2

)(
ηνσ −

kνkσ
m2

)
+

(
ηµσ −

kµkσ
m2

)(
ηνρ −

kνkρ
m2

)
− 2

3

(
ηµν −

kµkν
m2

)(
ηρσ −

kρkσ
m2

)
. (3.5)

If all particles attached to the propagator are on-shell, the mass
dependent terms in Bµν,ρσ(k,m) drop out. Further, if the on-shell
condition is not always fulfilled, it turned out in phenomenological
applications that the impact of the mass dependent terms is nu-
merically negligible [20, 21] and therefore we did not include them
in our implementation in order to avoid an enormous proliferation
of terms. In this case the summation over the graviton states in
D(s,m~n), leading to

D(s) =
∑
~n

i

s−m2
~n + iε

, (3.6)

can be performed independently from the Bµν,ρσ part carrying the
Lorentz structure. Further, in models with large extra dimensions
(LED), we can use the assumption that the widths of the KK modes
are negligible, as the dominant effects come from the almost on-
shell production of KK modes, and that the discrete spectrum of
the KK modes can be approximated by an integral over a mass
density, as the KK modes are very contiguous. The density as a
function of the mass m~n is given by

ρ(m~n) =
Rδmδ−2

~n

(4π)δ/2Γ(δ/2)
, (3.7)

where δ is the number of extra dimensions, leading to [22]

D(s)→
∫ MS

0
dm2

~n

i ρ(m~n)

s−m2
~n + iε

=


sδ/2−1

2Mδ+2
s GN

(
π + 2i I(MS√

s
)
)

for s > 0

(−s)δ/2−1

2Mδ+2
s GN

(−2i) IE(MS√
−s) for s < 0

(3.8)

with

I(x) =

{
−∑δ/2−1

k=1
1
2kx

2k − 1
2 log(x2 − 1) if δ even

−∑(δ−1)/2
k=1

1
2k−1x

2k−1 + 1
2 log

(
x+1
x−1

)
if δ odd

(3.9)

28

and

IE(x) =

(−1)δ/2+1
(∑δ/2−1

k=1
(−1)k

2k x2k + 1
2 log(x2 + 1)

)
if δ even

(−1)(δ−1)/2
(∑(δ−1)/2

k=1
(−1)k

2k−1 x
2k−1 + 1

2 tan−1(x)
)

if δ odd .

(3.10)

The UV cutoff MS is introduced as the effective theory approach
loses its validity beyond the scale MS .

GoSam supports spin-2 propagators with the customspin2propagator
extension which needs to be enabled in the process card by
extensions=customspin2propagator.

The extension works only if the model is imported from an UFO file.
The latter can be adjusted to the needs of the particular model the
user would like to consider by editing the file custompropagator.f90
in the subdirectory common. In order to generate the latter file, the
spin-2 particle which should get a customized propagator needs to
have a separate attribute ’CustomSpin2Prop’ in the UFO file with
a non-vanishing value:
Excerpt of LED UFO/particle.py with a customized propagator:

Gr = Particle(pdg_code = 9000006,

name = ’Gr’,

...

CustomSpin2Prop = 1

)

Then GoSam generates a the file common/custompropagator.f90

where the user needs to adapt the customSpin2Prop subroutine.
Beside the squared momentum, the customSpin2Prop subroutine
also receives the mass of the corresponding spin-2 particle as an
argument, which can be used to distinguish between multiple spin-
2 particles if necessary. The tensorial part of the spin-2 propagator,
Bµν,ρσ(k,m~n), is treated separately and should not be modified. If
the user would like to modify it, we refer to the documentation in
section 6.3 of src/form/lorentz.pdf in the GoSam tarball.

29

4 Stability tests and rescue system

GoSam contains various options to assess in real time, for each
phase space point, the level of precision of the corresponding one-
loop matrix element. Whenever a phase space point is found in
which the quality of the result falls below a certain threshold, either
the point is discarded or the evaluation of the amplitude is repeated
by means of a safer, albeit less efficient procedure. This procedure
is traditionally called “rescue system”.

Apart from improvements in the stability of the reduction itself,
which are provided by the new versions of Samurai and golem95C,
and in particular by the new reduction algorithm Ninja, the new
version of GoSam also has a more refined rescue system as com-
pared to version 1.0.

A first commonly used approach relies on the comparison between
the numerical values of the infrared pole coefficients computed by
the one-loop program with their known analytic results dictated
by the universal behaviour of the infrared singularities [23]. We
refer to this as the pole test.

The main advantages of this method are its broad applicability and
the fact that it requires a negligible additional computation time.
However, since not all integrals which appear in the reconstruction
of the amplitude give a contribution to the double and single poles,
this method often provides an overestimate of the precision, which
might result in keeping phase space points whose finite part is less
precise than what is predicted by the pole test.

To target directly the precision of the finite part, various possibili-
ties exist. Using the symmetry properties of scattering amplitudes
under scaling of all physical scales, or alternatively the invariance
under rotation of the momenta, we can build pairs of points that
should provide identical results, both for the finite parts and for
the poles, and use the difference between them as an estimator of
the precision.

The scaling test [24], is based on the properties of scaling of scat-
tering amplitudes when all physical scales (momenta, renormaliza-
tion scale, masses) are rescaled by a common multiplicative factor
x. As shown in [24], this method provides a very good correlation
between the estimated precision and the actual precision of the
finite parts.

The rotation test [4] exploits the invariance of the scattering am-
plitudes under an azimuthal rotation about the beam axis, namely

the direction of the initial colliding particles. Whenever the initial
particles are not directed along the beam axis, one can perform
a rotation of all particles by an arbitrary angle in the space of
momenta. A validation of this technique, and the corresponding
correlation plots, has been presented in [4].

While the scaling and the rotation test provide a more reliable es-
timate of the precision of the finite parts that enter in the phase
space integration, their downside is that they require two evalua-
tions of the same matrix element, therefore leading to a doubling
in the computational time.

For the precision analysis contained in GoSam, and to set the trig-
ger for the rescue system, we decided to employ a hybrid method,
that takes advantage of the computational speed of the pole test,
combined with the higher reliability of the rotation test. This hy-
brid method requires setting three different thresholds. After com-
puting the matrix elements, GoSam checks the precision δpole of
the single pole with the pole test. Comparing the single pole SIR
that can be obtained from the general structure of infrared sin-
gularities and the one provided by GoSam, which we label S, we
define

δpole =

∣∣∣∣SIR − SSIR

∣∣∣∣ . (4.1)

The corresponding estimate of the number of correct digits in the
result is provided by Ppole = − log10(δpole). This step does not
require any increase in computational time. The value of Ppole is
then compared with two thresholds Phigh and Plow.

If Ppole > Phigh the point is automatically accepted. Given the
high quality of the computed pole, the finite part is very unlikely
to be so poor that the point should be discarded.

If Ppole < Plow the point is automatically discarded, or sent to
the rescue system. If already the pole has a low precision, we can
expect the finite part to be of the same level or worse.

In the intermediate region where Phigh > Ppole > Plow, it is more
difficult to determine the quality of the result solely based on the
pole coefficients. Only in this case the point is recalculated using
the rotation test, which requires additional computational time.

If we call the finite part of the amplitudes evaluated before and
after the rotation A and Arot respectively, we can define the error
δrot estimated with the rotation as

δrot = 2

∣∣∣∣Arot −AArot +A

∣∣∣∣ . (4.2)

and the corresponding estimate on the number of correct digits as
Prot = − log10(δrot). Prot provides a reliable estimate of the preci-
sion of the finite part [4], and can be compared with a threshold
Pset to decide whether the point should be accepted or discarded.

31

The values of the three thresholds Phigh, Plow and Pset can be
chosen by the user, to adjust the selection mechanism to the fluc-
tuations in precision which occur between different processes. In
the input card, Phigh, Plow and Pset correspond to PSP chk th1,
PSP chk th2 and PSP chk th3, respectively, see section 3. It is
worth to notice that the rotation test can be bypassed simply by
setting the initial thresholds Phigh = Plow. In this case the selection
is performed solely on the basis of the pole test.

32

5 Electroweak corrections

5.1 Electroweak scheme choice

When computing amplitudes within the Standard Model, there are
different possibilities how to choose which electroweak parameters
are considered as input parameters, and which are instead derived
ones. Within GoSam different schemes can be chosen in several
different ways, depending on whether the scheme might be changed
after the generation of the code or not, by setting appropriately the
flag model.options.

By default, when the flag is not set in the input card, GoSam
generates a code which uses mW, mZ and α as input parameters,
allowing however to change this in the generated code, by setting
the variable ewchoice in the configuration file config.f90 to the
desired value. The user can choose among 8 different possibilities,
which are listed in Table 5.1. When the electric charge e is set
algebraically to one, the schemes 6− 8 cannot be used.

The flag model.options in the input card allows also to directly
set the values of the different parameters appearing in the model.
If the values of exactly three electroweak parameters are specified,
GoSam automatically takes them as input parameters. In that
case, in order to be able to switch among different schemes after
code generation, the variable ewchoose also must be added to the
model.options flag.

ewchoice input parameters derived parameters
1 GF, mW, mZ e, sw
2 α, mW, mZ e, sw
3 α, sw, mZ e, mW

4 α, sw, GF e, mW

5 α, GF, mZ e, mW, sw
6 e, mW, mZ sw
7 e, sw, mZ mW

8 e, sw, GF mW, mZ

Table 5.1: Possible choices to select the electroweak scheme. To
simplify the notation we write the sine of the Weinberg angle as sw.
The lists of derived parameters contain only the parameters which
are computed and used in the expressions for the amplitudes.

5.2 Support of complex masses

The integral libraries contained in the GoSam package as well as
the GoSam code itself fully support complex masses. This refers
to the introduction of finite widths for fermions as well as for W -
and Z-bosons. A fully consistent treatment of complex W - and
Z-boson masses requires the use of the complex mass scheme [25].
The boson masses are promoted to complex masses by

m2
V → µ2

V = m2
V − imV ΓV , V = W,Z . (5.1)

In order to maintain gauge invariance this affects the definition of
the Weinberg angle:

cos2 θw =
µ2
W

µ2
Z

. (5.2)

To make use of the complex mass scheme, we introduce two new
model files, sm complex and smdiag complex, which contain the
Standard Model with complex mass scheme, the first with a full
CKM matrix, the latter with a diagonal CKM matrix. An ex-
ample dealing with a complex top quark mass is given in the
examples/singletop subdirectory of the GoSam distribution.

34

6 Advanced diagram selection

GoSam implements several ways of selecting subsets of diagrams:

• by restricting QGraf,

• by selecting specific diagrams by their number,

• by defining filters using Python.

6.1 Restricting the generation with QGraf

The options for restricting the set of diagrams at the level of the
diagram generation is the most efficient way since this happens
already at the earliest possible stage. However, QGraf’s built-in
filters are sometimes too limited in order to express more advanced
criteria.

GoSam allows one to pass information to QGraf through the op-
tion qgraf.options and through qgraf.verbatim, qgraf.verbatim.lo
and qgraf.verbatim.nlo. For the exact syntax the user is referred
to the examples and to the QGraf documentation.

6.2 Selecting diagrams by their number

An a posteriori selection ’by eye’ can be achieved after all (also
unwanted) diagrams of a process have been generated and in-
spected in doc/process.ps. The user can then modify the options
select.lo and select.nlo and rerun gosam.py.

6.3 Filtering diagrams in Python

The user can write short Python functions in order to decide whether
a specific diagram is to be taken or not. This function should return
True for all diagrams which are kept, and False for all diagrams
which should be discarded. These functions are passed by the op-
tions filter.lo and filter.nlo.

Longer functions should be defined in an external file, which can
be passed using filter.module.

When writing a filter the one can use the predefined particle lists
QUARKS, LEPTONS, FERMIONS and BOSONS. The underscore () matches
any field.

A diagram object d has the following methods which are inteded
to be used in filters. Alternative predefined functions and functors
are also given.

d.rank() : returns the tensor rank of a diagram.
RANK ≡ λd.(d.rank())

d.loopsize() : returns the number of propagators in the loop of a diagram.
LOOPSIZE ≡ λd.(d.loopsize())

d.sign() : computes the sign coming from closed fermion loops.
SIGN ≡ λd.(d.sign())

d.isNf() : reports if a diagram contains a closed quark loop of size two
where all loop propagators are massless.
NF ≡ λd.(d.isNf())

d.isMassiveQuarkSE() : returns True if the diagram contains a QCD self energy in-
sertion at a massive quark line.
MQSE ≡ λd.(d.isMassiveQuarkSE())

d.isScaleless() : returns True if the loop integral associate with this diagram
carries no scale.
SCALELESS ≡ λd.(d.isScaleless())

d.vertices(f1,f2,...) : returns the number of vertices in the diagram with the spec-
ified fields. The arguments f1, f2, . . . are lists of field names.
VERTICES(f1, f2, . . .) ≡ λd.(d.vertices(f1, f2, . . .))

d.loopvertices(f1,f2,...) : same as vertices, but only counts vertices which have loop
propagators attached.
LOOPVERTICES(f1, f2, . . .) ≡ λd.(d.loopvertices(f1, f2, . . .))

d.iprop(f,**opts) : returns the number of propagators of the given fields. Op-
tional arguments are momentum to specify the momentum of
the propagator, twospin to filter by the 2× the spin, massive
to specify whether massive or massless propagators should
be considered and color to filter for certain color represen-
tations.
IPROP(. . .) ≡ λd.(d.iprop(. . .))

d.chord(f,**opts) : same as iprop but only counts loop propagators.
CHORD(. . .) ≡ λd.(d.chord(. . .))

d.bridge(f,**opts) : same as iprop but only counts propagators which are not in
a loop.
BRIDGE(. . .) ≡ λd.(d.bridge(. . .))

d.QuarkBubbleMasses() : returns a list of all different masses in a closed quark loop of
size two or an empty list if the diagram is not a quark bubble.
QBMASSES ≡ λd.(d.QuarkBubbleMasses())

Furthermore, the following predefined filters exist:

NFGEN(f1,f2,...) : for closed quark loops of size two this filter returns true only
if all loop propagators belong to one of the fields in the ar-
gument list. For all diagrams which are not quark bubbles it
returns True.

AND(filter1,filter2,...) : returns True if all filters in the argument list return True.

36

OR(filter1,filter2,...) : returns True if at least one filter in the argument list returns
True.

NOT(filter) : returns True if the argument evaluates to False.

TRUE : always returns True.

FALSE : always returns False.

37

7 The Binoth Les Houches Accord Interface

The interface of GoSam with a Monte Carlo event generator pro-
gram is based on the Binoth-Les Houches Accord (BLHA) standard
interface. GoSam-2.0 supports both BLHA1 [26] and BLHA2 [27].
Certainly, a dedicated interface without using the BLHA is also
possible.

7.1 Preparation of the order file

This step should be done by the Monte Carlo (MC) program. We
give a generic example of an order file for the process
pp → (Z → e+e−)+ jet in both BLHA1 and BLHA2 standards in
Figs. 7.1 and 7.2.

OLP order.lh

created by MC Sherpowig-1.0

Process: p p − > e+ e- jet

Model SMdiag

CorrectionType QCD

IRregularisation DRED

AlphasPower 2

AlphaPower 1

MatrixElementSquareType CHsummed

OperationMode CouplingsStrippedOff

SubdivideSubprocess no

Subprocesses

1 -1 − > 11 -11 21

1 21 − > 11 -11 1

2 -2 − > 11 -11 21

...

21 -2 − > 11 -11 -2

Process specific GoSam settings

#@ symmetries family,generation

vim: syntax=olp

#@OLP GOSAM 2.0

#@IgnoreUnknown False

#@IgnoreCase False

#@SyntaxExtensions

CorrectionType QCD | OK
IRregularisation DRED | OK
AlphasPower 2 | OK
AlphaPower 1 | OK
1

MatrixElementSquareType CHsummed | OK
OperationMode CouplingsStrippedOff | OK
SubdivideSubprocess no | OK
1 -1 − > 11 -11 21 | 1 1

1 21 − > 11 -11 1 | 1 2

2 -2 − > 11 -11 21 | 1 3

...

21 -2 − > 11 -11 -2 | 1 13

Figure 7.1: Examples of order and contract files for Z+jet, with
BLHA1 standards.

Remarks

• The order file can have any name and any extension. We use
the extension .lh for order files and .olc for contract files.

• The options WidthScheme, EWScheme in the BLHA2 exam-
ple are optional.

• The option SubdivdeSubprocess has the following effect on
the code generation with GoSam: if set to no, GoSam gen-
erates one label per subprocess, if set to yes it generates one

OLP order.lh

created by MC Sherpowig-2.0

InterfaceVersion BLHA2

CorrectionType QCD

IRregularisation DRED

WidthScheme ComplexMass

EWScheme alphaGF

AccuracyTarget 0.0001

DebugUnstable True

AlphasPower 1

AmplitudeType ccTree

1 -1 − > 11 -11 21

...

21 -2 − > 11 -11 -2

AmplitudeType scTree

1 -1 − > 11 -11 21

...

21 -2 − > 11 -11 -2

AmplitudeType Loop

1 -1 − > 11 -11 21

...

21 -2 − > 11 -11 -2

AlphasPower 2

AmplitudeType Tree

1 1 − > 11 -11 1 1

...

21 21 − > 11 -11 2 -2

vim: syntax=olp

#@OLP GOSAM 2.0

#@IgnoreUnknown False

#@IgnoreCase False

#@SyntaxExtensions

InterfaceVersion BLHA2 | OK
CorrectionType QCD | OK
IRregularisation DRED | OK
WidthScheme ComplexMass | OK
EWScheme alphaGF | OK
AccuracyTarget 0.0001 | OK
DebugUnstable True | OK

AlphasPower 1 | OK
AmplitudeType ccTree | OK
1 -1 − > 11 -11 21 | 1 131

...

21 2 − > 11 -11 2 | 1 70

AmplitudeType scTree | OK

1 -1 − > 11 -11 21 | 1 145

...

21 2 − > 11 -11 2 | 1 71

AmplitudeType Loop | OK
1 -1 − > 11 -11 21 | 1 137

...

21 2 − > 11 -11 2 | 1 63

AlphasPower 2 | OK
AmplitudeType Tree | OK
1 1 − > 11 -11 1 1 | 1 42

...

21 21 − > 11 -11 -2 2 | 1 106

Figure 7.2: Order and contract files for Z+jet with BLHA2 stan-
dards.

label per helicity subamplitude and therefore many labels per
subprocess.

• GoSam specific settings can be put into commentary lines
starting with the letter combination ‘#@’. This is not part of
the BLHA standard. The line ‘#@ symmetries . . . ’ restricts
the helicity subamplitudes being generated to the ones rel-
evant for this particular process, using the information that
flavour changings only occur within the same quark families
resp. lepton generations.

Additionally, the Extra keyword of BLHA2 for OLP-specific
settings is also supported.

39

7.2 Running GoSam

To run GoSam within the MC/OLP setup one can use the follow-
ing command:
gosam.py --olp --mc=MCname

↪→--config=<your-path-to>/gosam.conf order.lh

Remarks

• The extension --olp is mandatory whenever a BLHA order
file is processed.

• The extension --mc=MCname is optional. By specifying the
name of the Monte Carlo which is the intended partner pro-
gram, GoSam can choose some settings simplifying the com-
munication and linking. One can either specify --mc=MCname

or --mc=name/version. Alternatively (and also optional),
one can put this information into the order file:
#@olp.mc.name mypreferredmc

#@olp.mc.version 1.0.0

The short option for --mc is -M.

• The extension --config is optional and points to a GoSam
configuration file. The latter can be used to define GoSam
specific settings, such as diagram filters, treatment of the
rational parts, etc.

If this option is left out GoSam searches for a configuration
in one of the following locations:

– GoSam installation directory,

– user’s home directory,

– current working directory.

Possible names for default configuration files are gosam.in,
gosam.conf and .gosam. If such a file is not found, GoSam
takes the default values for all unspecified settings. The short
form is -c.

• The option --destination=<dir> allows to place the gen-
erated files into the directory <dir>. The short form is
-D<dir>.

• One can specify the name of the contract file which should be
written using the option --output-file=<contractfile> or
simply -o<contractfile>.

• The option --force will overwrite an already existing con-
tract file without any warning.

The contract file From the contract file one can see whether
the order file has been processed successfully. If everything went

40

smoothly it should look like the one in Fig. 7.1 resp. Fig. 7.2. All
settings are either acknowledged by the word OK or, in case of a
failure, by the word error followed by an error message.

The subprocesses receive an assignment to one or more labels per
subprocess. In the line
2 -2 → 11 -11 21 | 1 3

the suffix | 1 3 states that this subprocess has been assigned to 1

single label which has the value 3. Had we set SubdivideSubprocess
(keyword in BLHA1) to yes this line might have looked like
2 -2 → 11 11 21 | 4 0 1 2 3

meaning that the subamplitudes have been assigned to 4 labels
(which is the first number after the bar) with the values 0 to 3,
each denoting an individual helicity subamplitude. These labels
will enter the first argument of the routine OLP EvalSubProcess.
In order to retrieve the full amplitude the calling (MC) program
should sum over the contributions from all labels. Alternatively, it
is possible to sample the different channels by Monte Carlo tech-
niques.

7.3 Producing the libraries containing the virtual amplitudes

The procedure depends on whether the autotools extension is
enabled (by default for some Monte Carlo programs). If not, us-
ing instead the extension shared in the GoSam settings is highly
recommended.

With the autotools extension, the following sequence of com-
mands will generate and compile the virtual matrix element files:
./autogen.sh --prefix=$(pwd)

make install

Now one should find the following files1 in a subdirectory lib/ or
lib64/:

• libgolem olp.a for static linking,

• libgolem olp.so for dynamic linking,

• libgolem olp.la for linking with libtool.

Without the autotools extension, one only needs to call make

without any parameters. If the shared extension is enabled, one
gets a libgosam olp.so file in the top folder.

The Monte-Carlo program can now be linked to these files or
can use the dynamical library at runtime using the dlopen() and
dlsym() system calls2.

1 Due to backwards compatibility, they are still named libgolem olp instead
of libgosam olp.

2 For more details we refer to the corresponding man pages.

41

The required compiler and linking flags can be generated by calling
the config.sh script:
sh ./config.sh -cflags # prints C/C++ flags

sh ./config.sh -fcflags # prints Fortran flags

sh ./config.sh -libs # prints linking flags

Inside a makefile, one can use the following lines to extend existing
build flags:
CFLAGS+=$(shell ./config.sh -cflags)

FCFLAGS+=$(shell ./config.sh -ldflags)

LDFLAGS+=$(shell ./config.sh -libs)

The path to config.sh needs of course to be adapted if the make-
file is not in the same directory.

7.4 Calling the interface routines

For the default settings the call of the interface routines will be
automatic, so the user does not have to care about the details
described below.

We should note however that there are slight differences in naming
(underscoring) and calling conventions (call by reference versus call
by value) depending on the extensions in use. For --mc=powhegbox
the extension f77 is automatically included and therefore the un-
derscoring works such that gfortran used as a Fortran 77 compiler
would not complain. For all other Monte Carlo programs we follow
the C/C++ conventions (see the file olp.h).

In the following, we will describe BLHA1 and BLHA2 conventions
separately, even though large parts are identical for the two BLHA
versions.

7.4.1 BLHA1

Initialization

The generated GoSam library is initialized with the call
call OLP Start("path/to/contract.olc",ierr)

The variable ierr should be declared as an integer. If the contract
file is not found, ierr is set to a negative value. A non-negative
value indicates success.

Please note that calling OLP Start is mandatory even if the con-
tract file is not present or not read.

Importing external model files

If the contract file contains the option ModelFile, which should
point to a SLHA file, the matrix element code tries to load the
parameters from that file.

42

Setting options (optional)

Parameters can be passed by calling OLP option.
call OLP Option("name=value",ierr)

Note that the initialization of derived parameters only works cor-
rectly if the corresponding input parameters are set with OLP Option

before OLP Start is called.

Example:

ca l l OLP Option (”mZ=91.234” , i e r r)
ca l l OLP Option (”mW=80.123” , i e r r)

! a t t h i s p o i n t s i n (t he t a w) i s not up to date .
ca l l OLP Start (”path/ to / cont rac t . o l c ” , i e r r)

! now s i n (t he ta w) i s s e t c o n s i s t e n t l y

Some options can be changed at any time; it is instructive to look at
the file common/model.f90 which contains the available parameter
names and their settings.

Computing the matrix element

In BLHA1, the routine which returns a value for the matrix element
is OLP EvalSubProcess:

integer i l a b e l
double precision moms(5∗ n l eg s)
double precision mu, params (1)
double precision r e s (4)
! . . .
ca l l OLP EvalSubProcess (

& i l a b e l ,moms,mu, params , r e s)

The first argument, ilabel is one of the labels from the contract
file. The momenta are passed in the argument moms, which has the
format

(/E1, p
x
1 , p

y
1, p

z
1,m1, E2, p

x
2 , p

y
2, p

z
2,m2, . . . EN , p

x
N , p

y
N , p

z
N ,mN/)

The momenta are expected to be given in physical (in-out) kine-
matics: p1 + p2 = p3 + . . . + pN . The components are in units of
GeV.

The argument mu is the renormalisation scale µ (not µ2!) in GeV.
The argument params is an array of which the first argument is
αs(µ). Any further array entries are ignored within BLHA13.

The last argument is an array of length four which is filled by the
subroutine, containing the result of the evaluation. The entries

3 Passing more than one parameter is implemented by the Parameters option
in the order file, which is not part of the BLHA1 standard.

43

have as a unit some power of GeV (GeV(4−N)).

M†BMB = res(4)

2Re
(
M†BMV

)
=

(4π)ε

Γ(1− ε)

(
res(1)

ε2
+

res(2)

ε
+ res(3)

)
(7.1)

This means that the coefficients amp(1:3) contain an explicit factor
of αs(µ)/(4π).

Finalize (optional)

There is also a routine OLP Finalize which is only needed if the
client code needs to call OLP Start more than once, e.g.

do i =1,max i
write (l i n e , ’ (A3 , F6 . 3) ’) ”mZ=” , mZ(i)
ca l l OLP Option (l i n e , i e r r)
! Need o l p s t a r t to update dependent parameters
ca l l OLP Start (name, i e r r)
! . . .
ca l l OLP Final ize ()

enddo

7.4.2 BLHA2

Please note that with BLHA2 all light quark masses (u,d,s,c,b) are! →
set to zero by default. To have massive light quarks, one needs to
use the MassiveParticles parameter in the order file.

Initialization

The keyword InterfaceVersion, which can take the values BLHA1
or BLHA2, should be placed on top of the order file. This way, if
the OLP does not support one or the other, it can issue an error
message and stop without proceeding further.

To start the run-time phase, the function
OLP Start(char* fname, int* ierr) is the same as in BLHA1. A
new function
OLP Info(char olp name[15],char olp version[15],char message[255])

has been introduced which serves to keep track of the type and ver-
sion of the OLP which has been used, and to encourage proper ci-
tation. The arguments are the name of the OLP, the version, and a
string which contains information about the relevant publications,
for example the bibtex identifier.

Importing external model files

The BLHA2 offers two alternative ways of model definition, de-
noted by “keyword model” respectively “UFO model” in the follow-
ing.

44

Model definitions offer the possibility to define some global settings
in the order file, which are intrinsic to the model (e.g. SM, MSSM),
which is used. This is done using the required keyword Model. For
example, Model: smdiag sets the CKM matrix to unity globally.

In the “keyword model” setup, the parameters that need to be set
within a certain model are passed via PDG codes [28] and keywords
with naming conventions as specified in Fig. 7.3 for the Standard
Model. The numbers in parenthesis after mass and width denote
the particle’s PDG code.

keyword parameter

mass(5) b quark mass
mass(6) top quark mass
width(6) top quark width
sw2 sin2 θw
vev SM vacuum expectation value
Gf GFermi

VV12 Vud
...

Figure 7.3: List of keywords to define parameters to be passed by
the function OLP SetParameter.

In the “UFO model” setup, the parameters are defined in UFO (Uni-
versal Feynrules Output) [19] format, which is particularly useful
for calculations beyond the Standard Model. The import of the
UFO model file should be specified in the order file by
Model ufo:/path to ufo model-directory/.

The UFO format also provides human readable name attributes for
the model parameters, as well as the SLHA identifiers [29] which
are also supported by GoSam. The UFO model setup entails the use
of a SLHA parameter card to initialize the runtime phase. This
requires an additional keyword ParameterCard, followed by the
path to the SLHA parameter card, to be placed into the order file
when using the UFO model setup. The parameters which are set by
reading in the SLHA parameter card do not need to be set again by
OLP SetParameter. However, OLP SetParameter needs to be used
at runtime for the dynamic parameters. In this case the SLHA
block name should appear as a prefix prepended to the parameter
name, in the form <BlockName>&&<ParamName>. To avoid confu-
sion, this requires that the characters ‘&&’ should never appear in
any block or parameter name.

Setting parameters

Parameters are now passed by the subroutine
OLP SetParameter(char* para,double* re,double* im,int* ierr),

45

where the first argument is a (pointer to a) string serving as a key-
word for the parameter to be set, followed by two double precision
numbers so that complex parameters can also be passed (in case
of real parameters, the second double is zero). The integer in the
fourth argument is set by the OLP to tell the MC whether the
setting of the parameter was successful.
ierr=1 means the parameter has been set successfully,
ierr=0 means failure: issue an error message,
ierr=2 means that the parameter is unknown or the setting is ig-
nored (for example because it is irrelevant for the considered case),
but the MC program should proceed.

The function OLP SetParameter can be called at runtime, for every
phase space point, if used to define a dynamic parameter.

Computing the matrix element

In BLHA2, the routine which returns a value for the matrix ele-
ment is
OLP EvalSubProcess2(int* i, double* pp, double* mu, double* rval,

double* acc)

The arguments are:

• i: pointer to a (one element) array with the label of the
subprocess as given in the contract file

• pp: pointer to an array of momenta, conventions (Ej , k
x
j , k

y
j , k

z
j ,Mj)

• mu: pointer to the renormalisation scale

• rval: pointer to an array of return values

• acc: pointer to a one element array with the outcome of the
OLP internal accuracy check

The last argument is an array of length four which is filled by the
subroutine, containing the result of the evaluation, as specified in
eq. (7.1). The default settings for the prefactor can be changed
using the option nlo prefactor, see section 3.

For more details concerning the BLHA2 conventions we refer to
[27].

Loop-induced processes

Loop-induced processes are supported by the setting
AmplitudeType LoopInduced.

In GoSam, they are not handled like Born processes, but like vir-
tual corrections to non-existing born processes and therefore re-
turned in the virtual fieldA0 (PoleCoeff0) of OLP EvalSubprocess

and OLP EvalSubprocess2. The returned value corresponds to the
squared amplitude.

46

Please note that in the order file, CouplingPower or AlphasPower! →
and AlphaPower usually refer to the coupling powers if the corre-
sponding Born amplitude, and the type of the correction is specified
as CorrectionType. As in the case of loop-induced processes the
Born amplitude does not exist, the correct counting of the cou-
pling powers needs to be assured by setting CouplingPower (or
AlphasPower and AlphaPower) equal to the order of a correspond-
ing fictitious Born process, i.e. reduce the coupling powers of the
loop induced process correspondingly.

BSM-SM-interference processes

GoSam can calculate interference effects between e.g. BSM-Born
and SM processes (where the BSM Born for example comes from
additional interactions in an effective field theory). These processes
are handled as corrections being next-to-leading order in the SM
coupling.
In the case where the SM process is loop-induced, the standard pole
check would fail due to the non-matching Born. In this case, the
user should set PSP chk method=LoopInduced or PSP chk method=Rotation

in the GoSam input card, or use the GoSam-extension AmplitudeType

LoopInterference in the BLHA2 order file, which automatically
enables PSP chk method=LoopInduced.

Please note that such a setup may require to define some filters in
the input card to select the correct diagrams.

Precision checks

The GoSam input card variable PSP chk method, which controls
the behaviour how GoSam checks the result for each phase-space
point, can also be set by Extra PrecisionCheck. Possible values
are:

• Extra PrecisionCheck Automatic (default) – chooses au-
tomatically between PoleRotation and LoopInduced

• Extra PrecisionCheck PoleRotation – checks the preci-
sion of the pole first and rotates if necessary

• Extra PrecisionCheck Rotation – estimates the precision
of each phase space point by rotating and re-evaluating (slow)

• Extra PrecisionCheck LoopInduced – checks that the poles
are zero (i.e. very small compared to the finite part) and ro-
tates if necessary

• Extra PrecisionCheck Disabled – this sets PSP check=False

which switches off all phase space point precision checks.

47

Subprocess-specific settings in the GoSam input card

Settings in the GoSam input card can be subprocess-specific. This
is helpful if various subprocesses, each having different settings,
should be calculated at once.

For this purpose, the subprocesses are enumerated as in the BLHA
order file, starting at zero (to match to the correspondig p* subdi-
rectories created by GoSam).
This counting does not necessarily match the labels returned in the! →
BLHA contract file.

The syntax is option [list-of-subprocesses]=value . For ex-
ample, to disable the precision check for the second and third pro-
cesses in the order file, one can set PSP check[1,2]=True in the
input card.

Ranges and exclusion of ranges with ! (or ^) are supported. Ex-
amples for valid lists:

0-2 = {0, 1, 2}
-6,!3-4 = {0, 1, 2, 5, 6}
1-4,!3,9 = {1, 2, 4, 9}

Subprocess-specific settings need to be unambiguous, and they
overwrite the corresponding globally set values.

7.4.3 Production of colour-/spin correlated trees

GoSam can also generate tree level amplitudes in a spin- and
colour-correlated form. Colour correlated matrix elements are de-
fined as

Cij = 〈M|TiTj |M〉 , (7.2)

spin-correlated matrix elements can be defined as

Sij = 〈M,−|TiTj |M,+〉 . (7.3)

The spin-correlated matrix element above (as well as the colour cor-
related matrix element) contains implicitly the sum over all other
helicities, only the helicities with the indices i and j are fixed, i.e.

〈Mi,−|Ti ·Tj |Mi,+〉 = (7.4)∑
λ1,...,λi−1,λi+1,...,λn

〈Mλ1,...,λi−1,−,λi+1,...,λn |Ti ·Tj |Mλ1,...,λi−1,+,λi+1,...,λn〉 .

These matrix elements are particularly useful in combination with
Monte Carlo programs which use these trees to build the dipole
subtraction terms for the infrared divergent real radiation part.
With these modified tree level matrix elements GoSam is able to
generate all necessary building blocks for a complete NLO calcula-
tion.
Such a setup has been used successfully in combination with the
framework of Herwig++/Matchbox [30, 31, 32].

48

Appendix A Conventions

A.1 Conventions of golem95C

The integral library golem95C computes integrals of the form

µ2ε

∫
dDk

iπD/2
kµ1 · · · kµr

((k + r1)2 −m2
1) · · · (k + rN)2 −m2

N)

= rΓ ·
[c−2

ε2
+
c−1

ε
+ c0 +O(ε)

]
(A.1)

where D = (4− 2ε) and

rΓ =
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)
. (A.2)

The commonly used integration measure for the internal momen-
tum k is

µ2εdDk

(2π)D
= µ2ε i

2DπD/2
· dDk

iπD/2
=

(4π)ε · i
(4π)2

· µ
2εdDk

iπD/2
. (A.3)

A.2 Conventions of GoSam

The factor from above which does not go into the integral definition
of golem95C can be written as

(4π)ε · i
(4π)2

=
(4π)ε

(2π)(4π)

i

2
(A.4)

The factor of i/2 is included in the amplitude definition of GoSam.
The factors (2π) and (4π) are later used to build up a factor of
αx/2π, where αx is either α or αs.

In the following we assume that the coupling constants1 have been
set to one in the setup of GoSam. This ensures that the one-loop
matrix element in QCD is calculated in the MS scheme as

|M|21-loop =
αs
2π

(4π)ε

Γ(1− ε) ·
[c−2

ε2
+
c−1

ε
+ c0 +O(ε)

]
(gn1

1 · · · g
nq
q)

(A.5)
The factor (gn1

1 · · · g
nq
q) are the coupling constants appearing in the

squared tree-level matrix element. GoSam will return the coeffi-
cients c−2, c−1 and c0.

1 e and gs in the standard model

The conversion between different conventions for the Γ-functions
is straightforward:

1

Γ(1− ε) = rΓ +O(ε3) =

(
1− π2

6
ε2

)
Γ(1 + ε) +O(ε3) (A.6)

The relevant terms in the expansion of rΓ are

rΓ = e−γEε
(

1− π2

12
ε2

)
+O(ε3) (A.7)

If one prefers to pull out a factor of e−γEε(4π)ε the appropriate
definition of the matrix element up to terms of O(ε) is

|M|21-loop

e−γEε(4π)ε
=
αs
2π
·
[
c−2

ε2
+
c−1

ε
+

(
c0 −

π2

12
c−2

)]
(gn1

1 · · · g
nq
q)

(A.8)

50

Appendix B Explicit reduction of the R2 terms

The R2 term [33] consists of all terms of the numerator containing
an explicit ε or µ2 coming from the Lorentz algebra in D = 4− 2ε
dimensions. For an explicit reduction of these terms, we give a list
of all relevant integrals of the form∫

dDk

iπn/2
N(k̂) · µ2α · εβ
D0 · · ·DN

(B.1)

where either α or β is a positive integer number, k̂ denotes 4-
dimensional loop momenta, k2 = k̂2 − µ2, and the denominators
are Di = (k+ ri)

2−m2
i + iδ. Note that integrals where both α and

β are non-zero will not contribute to the final result, as they will
be of order ε. An integral of rank r can be written as [34, 35]:

ID,α,β;µ1...µr
N = (−1)r

Γ(α− ε)
Γ(−ε) εβ

br/2c∑
l=0

(
−1

2

)l N∑
j1,...,jr−2l=1

×
[
ĝ•• . . . ĝ••r•j1 · · · r•jr−2l

]µ1...µr
ID+2α+2l
N (j1, . . . , jr−2l). (B.2)

Here, the integral IdN (j1, j2, . . .) denotes a Feynman parameter in-
tegral with the parameters zj1 , zj2 , . . . in the numerator,

IdN (j1, . . . , jp) =

(−1)NΓ

(
N − d

2

)∫
dD�z δz

∏p
ν=1 zjν[

−1
2z

TSz − iδ
]N−d/2 , (B.3)

where dD�z =
∏N
j=1 dzjΘ(zj)Θ(1 − zj) and δz = δ(1 − ∑i zi).

The square brackets [. . .]µ1...µp expand to the sum of all possible
assignments of indices to the ĝ••-tensors and momenta r•j . The

kinematic matrix S is given by Sij = (ri − rj)2 −m2
i −m2

j .

We only need to consider integrals containing an UV pole, because
only the latter lead to a rational term when multiplied with ε
stemming either from εβ or from the integral prefactor

Γ(α− ε)
Γ(−ε) = (α− 1)!

[
−ε+O(ε2)

]
, forα > 0. (B.4)

The UV divergence comes from the Gamma function

Γ

(
N − D + 2α+ 2l

2

)
= Γ(ε− (2 +α+ l−N)) ≡ Γ(ε− η) (B.5)

in the Feynman parameter integral ID+2α+2l
N . Hence, we examine

further the expression

ε · ID+2l+2α
N (l1, . . . , lr−2l) ={

O(ε), η < 0

(−1)N 1
2ηη!

∫
dD�zδz

[
zTSz

]η∏r−2l
i=1 zli , η ≥ 0

(B.6)

The remaining integration can be understood as a special case of
the Feynman parameter identity

1∏N
j=1A

νj
j

=
Γ(ν)∏N
j=1 Γ(νj)

∫
dD�z δz

∏N
j=1 z

νj−1
j(∑N

j=1 zjAj

)ν , ν =
∑
j

νj

(B.7)
for Aj = 1, in which case one finds∫

dD�z δz

N∏
j=1

z
νj−1
j =

∏N
j=1 Γ(νj)

Γ(α)
(B.8)

All non-zero cases for integrals where the rank does not exceed the
number of propagators are listed below [36, 35]

ID,0,11 = −1

2
S11 (B.9)

ID,0,1;µ1
1 =

1

2
S11 · rµ11 (B.10)

ID,1,02 = −1

6
(S11 + S12 + S22) (B.11)

ID,0,12 = 1 (B.12)

ID,0,1;µ1
2 = −1

2
(rµ11 + rµ12) (B.13)

ID,0,1;µ1µ2
2 =

1

6
(2rµ11 rµ21 + rµ11 rµ22 + rµ12 rµ21 + 2rµ12 rµ22)

− 1

12
ĝµ1µ2 (S11 + S12 + S22) (B.14)

ID,1,03 =
1

2
(B.15)

ID,1,0;µ1
3 = −1

6
(rµ11 + rµ12 + rµ13) (B.16)

ID,0,1;µ1µ2
3 =

1

4
ĝµ1µ2 (B.17)

ID,0,1;µ1µ2µ3
3 = − 1

12

3∑
l=1

[ĝ••r•]µ1µ2µ3 (B.18)

ID,1,0;µ1µ2
4 =

1

12
ĝµ1µ2 (B.19)

ID,2,04 = −1

6
(B.20)

ID,0,1;µ1µ2µ3µ4
4 =

1

4!
[ĝ••ĝ••]µ1µ2µ3µ4 (B.21)

52

In addition, we list integrals which contribute to the rational part
in cases where the rank exceeds the number of propagators, for
example in the presence of effective gluon-Higgs couplings, or in
models involving gravitons. More details about higher rank inte-
grals can be found in Refs. [8, 3, 10].

ID,35 (S) =

∫
dDk

iπD/2

(
k̃2
)3

∏5
j=1(q2

j −m2
j + iδ)

= − 1

12
,

ID,2;µ1µ2
5 (a1, a2;S) =

∫
dDk

iπD/2

(
k̃2
)2

q̂µ1a1 q̂
µ2
a2∏5

j=1(q2
j −m2

j + iδ)
= − 1

48
ĝµ1µ2 ,

ID,1;µ1···µ4
5 (a1, . . . , a4;S) =

∫
dDk

iπD/2
k̃2 q̂µ1a1 . . . q̂

µ4
a4∏5

j=1(q2
j −m2

j + iδ)

= − 1

96
[ĝµ1µ2 ĝµ3µ4 + ĝµ1µ3 ĝµ2µ4 + ĝµ1µ4 ĝµ2µ3] ,

εID+6
4 (S) =

1

240

 4∑
i,j=1

((ri − rj)2 −m2
i −m2

j)− 2
4∑
i=1

m2
i

 .

(B.22)

In the GoSam process card, the default is r2=explicit, which
means that the rational part R2 is calculated algebraically using
the formulae above, while the integrand reduction can be done in
4 dimensions. Choosing r2=implicit means that R2 will be cal-
culated together with the 4-dimensional part during the reduction.

53

Appendix C The included model files

C.1 Format of the model files

GoSam expects three files for a proper model definition:

〈model〉.hh : FORM file containing the Feynman rules

〈model〉.py : Python file

〈model〉 : (no extension) QGraf model file

C.1.1 The Python file

Thy Python file contains the following definitions

model name : a variable of string type containing a human-readable name
for this model, such as “Standard Model (Feyn. Gauge) w/o
Higgs” etc.

particles : a Python dict that contains all particles and anti-particles
of the model. The keys are the QGraf names of the fields; the
values are objects of the class Particle. The constructor has
the arguments

Particle(name,two_spin,mass,color_rep,partner,width=’0’,charge)

mnemonics : a Python dict of human-readable particle names. The values
are objects of the class Particle. It is save to refer to the
dictionary particles.

parameters : a Python dict of model parameters with their default values.
Both key and value are strings.

functions : a Python dict of variable names and initialization expres-
sions. Both key and value are strings.

types : the types of all parameters and functions indicated by ’R’

for real numbers and ’C’ for complex numbers.

latex names : a Python dict assigning LATEX code to the field names. Math
mode is assumed.

line styles : a Python dict assigning line styles to field names. The line
style used when drawing Feynman diagrams. Allowed values
are photon, ghost, scalar, gluon, fermion.

C.1.2 The QGraf file

The propagators in the QGraf file must contain the following func-
tions:

TWOSPIN : twice the spin of the particle.

COLOR : the color representation of the particle ∈ {1, 3, 8}.
MASS : the mass of the particle.

WIDTH : the width of the particle (currently not used).

AUX : must be zero for most fields. Tensor Ghosts, as introduced
by CalcHep have the value 1 here.

CONJ : for self-conjugate particles the value is (’+’), otherwise it is
(’+’,’-’).

The vertices must provide all fields that should be accessible in
VSUM statements and therefore also the ones that GoSam uses in
the order option.

C.1.3 The FORM file

There are two possible ways of specifying the Feynman rules in
the FORM file. If a model contains only Standard Model like in-
teractions one can make use of the file src/form/vertices.hh in
the GoSam directory and just define the coefficients CL and CR in
front of the vertices. This strategy is implemented by the modelfiles
models/sm. The file FORM contains a procedure VertexConstants

which replaces the the vertex constants by their symbols. A QED
example would be

#Procedure VertexConstants
Id CL([f i e l d . em] , [f i e l d . ep] , [f i e l d . ph]) = e ;
Id CR([f i e l d . em] , [f i e l d . ep] , [f i e l d . ph]) = e ;

#EndProcedure

In the header of the FORM file all model specific symbols and func-
tions need to be defined. For this simple model we have the fields
and the coupling constant as only new symbols.

Symbols [f i e l d . em] , [f i e l d . ep] , [f i e l d . ph] , e ;

Instead of using the file vertices.hh one can also use his own
vertex definitions. In this case the FORM file must contain the defi-
nition

#Define USEVERTEXPROC ”1”

and it must define the procedure ReplaceVertices. An example
for QED is given below.

55

#Procedure Rep laceVer t i c e s
Identify Once ver tex (iv ? ,

[f i e l d . ep] , idx1 ? , −1, k1 ? , idx1L1 ? , −1, idx1C1 ? ,
[f i e l d . em] , idx2 ? , 1 , k2 ? , idx2L1 ? , 1 , idx2C1 ? ,
[f i e l d . ph] , idx3 ? , 2 , k3 ? , idx3L2 ? , 1 , idx3C1 ?) =

PREFACTOR(i ∗ e) ∗
NCContainer (Sm(idx3L2) , idx1L1 , idx2L1) ∗
node (idx1 , idx2 , idx3) ;

#EndProcedure

It should be noted that GoSam expects the procedure VertexConstants
to exist in both cases. If all the constants are already substituted
inside ReplaceVertices the file must still provide a possibly empty
empty implementation of VertexConstants. GoSam ensures that
VertexConstants is always called after ReplaceVertices.

It is recommended to wrap any factors that are global prefactors
to the diagram into the argument of the function PREFACTOR as
GoSam scans for these functions and brackets them out. Each
vertex definition must contain a factor node which contains the
indices1 of the fields at this vertex.

The QGraf style file generates vertex functions as follows:

vertex(vertex index,

field1, index1,±2spin1,momentum1, µ1,±color rep1, color index1,

field2, index2,±2spin2,momentum2, µ2,±color rep2, color index2,

...

fieldn, indexn,±2spinn,momentumn, µn,±color repn, color indexn)

The entries are:

vertex index : The unique index of this vertex. (iv1, iv2, . . .)

fieldi : The field name of the i-th particle. These names are con-
structed from the QGraf field name as [field.〈name〉].

indexi : A unique name for this “ray” (at index 1 they are idx1r1,
idx1r2, . . .)

±2spini : twice the spin of the i-th particle. The sign distinguishes
particles (+) from antiparticles (−).

momentumi : the incoming momentum of the i-th particle.

1 In QGraf’s terminology these indices are a combination of vertex and ray
index of the field.

56

µi : the Lorentz index of the i-th particle. Depending on the spin
of the particle this is a spinor index (spin 1/2), a Lorentz in-
dex (spin 1) or a dummy index (spin 0). For higher spins this
index must be split into its components using the function
SplitLorentzIndex. For its proper definition the reader is
referred to the document src/form/lorentz.pdf.

±color repi : the color representation of the i-th particle. Allowed values
currently are ±1,±3,±8, although the sign only really makes
sense for the fundamental representation 3 and its conjugate
3̄ ≡ −3.

color indexi : The color index of the i-th particle. Depending on the color
representation this is an index in the fundamental, the adjoint
or the trivial representation.

All symbols defined in src/form/symbols.hh are also accessible
in this FORM file. Note: until recently the definitions of Sqrt2 and! →
sqrt2 were part of the model file. Now these symbols are part of
src/form/symbols.hh and must not be redefined.

All Dirac matrices and metric tensors must use the notation intro-! →
duced by spinney. The metric tensor is gµν = d(µ, ν) and γµ =
Sm(µ), γ5 = Gamma5, Π+ = ProjPlus, Π− = ProjMinus. All non-
commuting objects must reside inside the function NCContainter

(see example).

The color structure must use the objects tAij = T(A, i, j) (where the

color flow is such thatj is the index of an anti-quark), fABC =
f(A,B,C) and fABEfCDE = f4(A,B,C,D). At vertices coupling
colored with colorless particles it might be necessary to use the d

tensor to file the color flow through the vertex.

Note that all propagators and wave functions are defined in a! →
model independent way in the files src/form/propagators.hh and
src/form/legs.hh. Please, refrain from modifying these files di-
rectly but make all changes to src/form/lorentz.nw.

In theories with Majorana fermions the model file should include
the following line:

#Define DISPOSEQGRAFSIGN ”1”

C.2 Standard Model (sm)

C.2.1 Synopsis

The model ‘sm’ contains the Feynman rules for the Standard Model
in Feynman gauge as described in [37, Appendix A].

57

C.2.2 Particle content

Name Alternative Names Mass Comment

ep positron e+ me e+

em electron e- me e−

ne 0 νe
nebar ne~ 0 ν̄e
mup mu+ mmu µ+

mum mu- mmu µ−

nmu 0 νµ
nmubar nmu~ 0 ν̄µ
taup tau+ mtau e+

taum tau- mtau e−

ntau 0 ντ
ntaubar ntau~ 0 ν̄τ

Leptons

Name Alternative Names Mass Comment

U u mU u
Ubar u~ mU ū
D d mD d
Dbar d~ mD d̄

S s mS u
Sbar s~ mS ū
C c mC d
Cbar c~ mC d̄

T t mT t
Tbar t~ mT t̄
B b mB b
Bbar b~ mB b̄

Quarks

Name Alternative Names Mass Comment

g gluon 0 g
A photon gamma 0 γ
Z mZ Z
Wp W+ mW W+

Wm W- mW W−

Gauge Bosons

Name Alternative Names Mass Comment

H h higgs mH H
phim phi- mW φ−

phip phi+ mW φ+

chi mZ χ

Scalar Bosons

58

Name Alternative Names Mass Comment

gh 0 ug

ghbar 0 ūg

ghA 0 uA

ghAbar 0 ūA

ghZ mZ uZ

ghZbar mZ ūZ

ghWp mW u+

ghWpbar mW ū+

ghWm mW u−

ghWmbar mW ū−

Ghost Fields

C.2.3 Parameters

This section lists all model parameters which are not already listed
as particle masses.

Name Symbol Description

NC NC Number of colors in QCD
e e electro-weak coupling constant: α = e2/(4π)
gs gs strong coupling constant: αs = g2

s/(4π)
sw sw = sin θw sine of weak mixing angle
cw cw = cos θw cosine of weak mixing angle
VUD Vud CKM mixing matrix element

CVDU V †du — ” —
VUS Vus — ” —

CVSU V †su — ” —
VUB Vub — ” —

CVBU V †bu — ” —
VCD Vcd — ” —

CVDC V †dc — ” —
VCS Vcs — ” —

CVSC V †sc — ” —
VCB Vcb — ” —

CVBC V †bc — ” —
VTD Vtd — ” —

CVTD V †dt — ” —
VTS Vts — ” —

CVST V †st — ” —
VTB Vtb — ” —

CVTB V †bt — ” —

C.3 GoSam directory structure

The GoSam source directory has the structure as described below:

This directory contains the documentation and example setup files.doc/

You can run make in this directory to generate the document
refman.pdf; this is the document you are currently reading.

59

For each implemented model this directory contains the QGrafmodels/

model file (no extension), a FORM interface (*.hh) and a Python

module (*.py). Currently, the Standard Model (sm) is distributed
with GoSam, where several variants are available:
smdiag implements diagonal flavour structure (VCKM = diag{1, 1, 1}),
smehc contains effective gluon-Higgs couplings),
sm complex and smdiag complex support the complex mass scheme.
The structure of the model files is discussed in more detail in Chap-
ter C.1. Model files for the MSSM based on FeynRules/UFO [19]
and LanHEP [38] can be found in the directory examples/model/,
as well as UFO files for ADD [39] models with large extra dimensions
(LED).

Contains templates for the creation of the files in the process di-templates/

rectory. The contents are transformed by the class
golem.util.parser.Template and its subclasses in golem.templates.*.
The translation of the templates is controled by the file templates.xml
of the same directory.

All model independent Python modules can be found in this direc-src/python/

tory tree.

Here one finds all FORM files which are not part of the template.src/form/

This directory is created during building and installation of thisbuild

package by running setup.py. The files in this directory are of
temporary nature and can be safely removed.

This directory is created by running setup.py with the sdist ordist

bdist command and contains the distributable package files. To
create a tar-ball from the working copy, Please run

$ python setup.py sdist --formats=gztar

For more information please run

$ python setup.py --help-commands

This directory contains some simple examples of validated pro-examples

cesses.

Files in this directory are used by gosam.py --olp, which is GoSam’solp

implementation of the Binoth Les Houches interface for one-loop
programs (BLHA). Both the original standards [26] and the new
standards (BLHA2) [27] are supported by GoSam 2.0.

60

Conditions of use

GoSam-1.0 – An automated One-Loop matrix element generator.
Copyright (C) 2011, 2012, 2013 The GoSam Collaboration
Eur.Phys.J. C72 (2012) 1889, arXiv:1111.2034 [hep-ph].

GoSam-2.0
Copyright (C) 2014–2015 The GoSam Collaboration

• Hans van Deurzen

• Nicolas Greiner

• Gudrun Heinrich

• Gionata Luisoni

• Pierpaolo Mastrolia

• Giovanni Ossola

• Tiziano Peraro

• Johannes Schlenk

• Johann Felix von Soden-Fraunhofen

• Francesco Tramontano

Former members:

• Gavin Cullen

• Edoardo Mirabella

• Joscha Reichel

• Thomas Reiter

We are indebted to Thomas Reiter for his invaluable contribu-
tions to the development of GoSam-1.0.

This program is free software: you can redistribute it and/or mod-
ify it under the terms of the GNU General Public License as pub-
lished by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied war-
ranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU General Public License for more
details, http://www.gnu.org/licenses/.

http://www.gnu.org/licenses/

Scientific publications prepared using the present version of GoSam
or any modified version of it or any code linking to GoSam or parts
of it should make a clear reference to the publication:

G. Cullen, H. van Deurzen, N. Greiner, G. Heinrich,
G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, T.
Peraro, J. Schlenk, J.F.von Soden-Fraunhofen, F. Tra-
montano,
“GoSam-2.0: a tool for automated one-loop calcula-
tions within the Standard Model and Beyond”,
Eur. Phys. J. C 74 (2014) 8, 3001 [arXiv:1404.7096
[hep-ph]].

62

Bibliography

[1] G. Cullen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, et al., Automated One-Loop
Calculations with GoSam, Eur.Phys.J. C72 (2012) 1889, [arXiv:1111.2034].

[2] G. Cullen, H. van Deurzen, N. Greiner, G. Heinrich, G. Luisoni, et al., GOSAM -2.0: a
tool for automated one-loop calculations within the Standard Model and beyond,
Eur.Phys.J. C74 (2014), no. 8 3001, [arXiv:1404.7096].

[3] P. Mastrolia, E. Mirabella, and T. Peraro, Integrand reduction of one-loop scattering
amplitudes through Laurent series expansion, JHEP 1206 (2012) 095, [arXiv:1203.0291].

[4] H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, et al., Multi-leg
One-loop Massive Amplitudes from Integrand Reduction via Laurent Expansion,
arXiv:1312.6678.

[5] T. Peraro, Ninja: Automated Integrand Reduction via Laurent Expansion for One-Loop
Amplitudes, arXiv:1403.1229.

[6] T. Binoth, J. P. Guillet, G. Heinrich, E. Pilon, and T. Reiter, Golem95: a numerical
program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys.
Commun. 180 (2009) 2317–2330, [arXiv:0810.0992].

[7] G. Cullen, J. Guillet, G. Heinrich, T. Kleinschmidt, E. Pilon, et al., Golem95C: A library
for one-loop integrals with complex masses, Comput.Phys.Commun. 182 (2011)
2276–2284, [arXiv:1101.5595].

[8] J. P. Guillet, G. Heinrich, and J. von Soden-Fraunhofen, Tools for NLO automation:
extension of the golem95C integral library, arXiv:1312.3887.

[9] P. Mastrolia, G. Ossola, T. Reiter, and F. Tramontano, Scattering AMplitudes from
Unitarity-based Reduction Algorithm at the Integrand-level, JHEP 08 (2010) 080,
[arXiv:1006.0710].

[10] H. van Deurzen, Associated Higgs Production at NLO with GoSam, Acta Phys.Polon.
B44 (2013), no. 11 2223–2230.

[11] P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993)
279–289.

[12] J. A. M. Vermaseren, New features of FORM, math-ph/0010025.

[13] J. Kuipers, T. Ueda, J. Vermaseren, and J. Vollinga, FORM version 4.0,
arXiv:1203.6543.

[14] T. Reiter, Optimising Code Generation with haggies, Comput.Phys.Commun. 181 (2010)
1301–1331, [arXiv:0907.3714].

[15] G. Heinrich, G. Ossola, T. Reiter, and F. Tramontano, Tensorial Reconstruction at the
Integrand Level, JHEP 1010 (2010) 105, [arXiv:1008.2441].

http://xxx.lanl.gov/abs/1111.2034
http://xxx.lanl.gov/abs/1404.7096
http://xxx.lanl.gov/abs/1203.0291
http://xxx.lanl.gov/abs/1312.6678
http://xxx.lanl.gov/abs/1403.1229
http://xxx.lanl.gov/abs/0810.0992
http://xxx.lanl.gov/abs/1101.5595
http://xxx.lanl.gov/abs/1312.3887
http://xxx.lanl.gov/abs/1006.0710
http://xxx.lanl.gov/abs/math-ph/0010025
http://xxx.lanl.gov/abs/1203.6543
http://xxx.lanl.gov/abs/0907.3714
http://xxx.lanl.gov/abs/1008.2441

[16] M. A. Malcolm, An algorithm for floating-point accumulation of sums with small relative
error, tech. rep., Stanford University, Stanford, CA, USA, 1970.

[17] J. A. M. Vermaseren, Axodraw, Comput. Phys. Commun. 83 (1994) 45–58.

[18] T. Ohl, Drawing Feynman diagrams with Latex and Metafont, Comput. Phys. Commun.
90 (1995) 340–354, [hep-ph/9505351].

[19] C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, et al., UFO - The Universal
FeynRules Output, Comput.Phys.Commun. 183 (2012) 1201–1214, [arXiv:1108.2040].

[20] T. Gleisberg, F. Krauss, K. T. Matchev, A. Schalicke, S. Schumann, et al., Helicity
formalism for spin-2 particles, JHEP 0309 (2003) 001, [hep-ph/0306182].

[21] N. Greiner, G. Heinrich, J. Reichel, and J. F. von Soden-Fraunhofen, NLO QCD
Corrections to Diphoton Plus Jet Production through Graviton Exchange, JHEP 1311
(2013) 028, [arXiv:1308.2194].

[22] T. Han, J. D. Lykken, and R.-J. Zhang, On Kaluza-Klein states from large extra
dimensions, Phys.Rev. D59 (1999) 105006, [hep-ph/9811350].

[23] S. Catani, S. Dittmaier, and Z. Trocsanyi, One loop singular behavior of QCD and SUSY
QCD amplitudes with massive partons, Phys.Lett. B500 (2001) 149–160,
[hep-ph/0011222].

[24] S. Badger, B. Biedermann, and P. Uwer, NGluon: A Package to Calculate One-loop
Multi-gluon Amplitudes, Comput.Phys.Commun. 182 (2011) 1674–1692,
[arXiv:1011.2900].

[25] A. Denner, S. Dittmaier, M. Roth, and L. Wieders, Electroweak corrections to
charged-current e+e− → 4 fermion processes: Technical details and further results,
Nucl.Phys. B724 (2005) 247–294, [hep-ph/0505042].

[26] T. Binoth, F. Boudjema, G. Dissertori, A. Lazopoulos, A. Denner, et al., A Proposal for
a standard interface between Monte Carlo tools and one-loop programs,
Comput.Phys.Commun. 181 (2010) 1612–1622, [arXiv:1001.1307]. Dedicated to the
memory of, and in tribute to, Thomas Binoth, who led the effort to develop this proposal
for Les Houches 2009.

[27] S. Alioli, S. Badger, J. Bellm, B. Biedermann, F. Boudjema, et al., Update of the Binoth
Les Houches Accord for a standard interface between Monte Carlo tools and one-loop
programs, Comput.Phys.Commun. 185 (2014) 560–571, [arXiv:1308.3462].

[28] Particle Data Group Collaboration, J. Beringer et al., Review of Particle Physics
(RPP), Phys.Rev. D86 (2012) 010001.

[29] P. Z. Skands, B. Allanach, H. Baer, C. Balazs, G. Belanger, et al., SUSY Les Houches
accord: Interfacing SUSY spectrum calculators, decay packages, and event generators,
JHEP 0407 (2004) 036, [hep-ph/0311123].

[30] Proceedings of the Les Houches 2013 workshop on Physics at TeV colliders, 2014.

[31] J. Bellm, S. Gieseke, D. Grellscheid, A. Papaefstathiou, S. Plätzer, et al., Herwig++ 2.7
Release Note, arXiv:1310.6877.

[32] S. Plätzer and S. Gieseke, Dipole Showers and Automated NLO Matching in Herwig++,
Eur.Phys.J. C72 (2012) 2187, [arXiv:1109.6256].

64

http://xxx.lanl.gov/abs/hep-ph/9505351
http://xxx.lanl.gov/abs/1108.2040
http://xxx.lanl.gov/abs/hep-ph/0306182
http://xxx.lanl.gov/abs/1308.2194
http://xxx.lanl.gov/abs/hep-ph/9811350
http://xxx.lanl.gov/abs/hep-ph/0011222
http://xxx.lanl.gov/abs/1011.2900
http://xxx.lanl.gov/abs/hep-ph/0505042
http://xxx.lanl.gov/abs/1001.1307
http://xxx.lanl.gov/abs/1308.3462
http://xxx.lanl.gov/abs/hep-ph/0311123
http://xxx.lanl.gov/abs/1310.6877
http://xxx.lanl.gov/abs/1109.6256

[33] G. Ossola, C. G. Papadopoulos, and R. Pittau, On the Rational Terms of the one-loop
amplitudes, JHEP 0805 (2008) 004, [arXiv:0802.1876].

[34] T. Binoth, J. P. Guillet, G. Heinrich, E. Pilon, and C. Schubert, An Algebraic/numerical
formalism for one-loop multi-leg amplitudes, JHEP 0510 (2005) 015, [hep-ph/0504267].

[35] T. Reiter, Automated Evaluation of One-Loop Six-Point Processes for the LHC,
arXiv:0903.0947.

[36] T. Binoth, J. P. Guillet, and G. Heinrich, Algebraic evaluation of rational polynomials in
one-loop amplitudes, JHEP 0702 (2007) 013, [hep-ph/0609054].

[37] M. Böhm, A. Denner, and H. Joos, Gauge Theories of the Strong and Electroweak
Interaction. Teubner, Stuttgart and Leipzig and Wiesbaden, 3rd ed., 2001.

[38] A. Semenov, LanHEP - a package for automatic generation of Feynman rules from the
Lagrangian. Updated version 3.1, arXiv:1005.1909.

[39] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, The Hierarchy problem and new
dimensions at a millimeter, Phys.Lett. B429 (1998) 263–272, [hep-ph/9803315].

65

http://xxx.lanl.gov/abs/0802.1876
http://xxx.lanl.gov/abs/hep-ph/0504267
http://xxx.lanl.gov/abs/0903.0947
http://xxx.lanl.gov/abs/hep-ph/0609054
http://xxx.lanl.gov/abs/1005.1909
http://xxx.lanl.gov/abs/hep-ph/9803315

	Introduction
	Download and installation
	Prerequisites
	Download
	Installation
	Additional information about the installation process
	Updating an existing installation
	Uninstalling

	Description of the components

	Setup of a process
	Example: e+e- to tt-bar at NLO in QCD
	Process directory structure
	Code generation and compilation
	Producing optimised code with FORM version 4
	Grouping/summing of diagrams which share common subdiagrams
	Numerical polarisation vectors
	The extension derive
	Customization

	Drawing the Feynman diagrams
	Import of model files
	Import from FeynRules
	Import from LanHEP
	Propagators for spin-2 particles

	Stability tests and rescue system
	Electroweak corrections
	Electroweak scheme choice
	Support of complex masses

	Advanced diagram selection
	Restricting the generation with QGraf
	Selecting diagrams by their number
	Filtering diagrams in Python

	The Binoth Les Houches Accord Interface
	Preparation of the order file
	Running GoSam
	Producing the libraries containing the virtual amplitudes
	Calling the interface routines
	BLHA1
	BLHA2
	Production of colour-/spin correlated trees

	Conventions
	Conventions of golem95C
	Conventions of

	Explicit reduction of the R2 terms
	The included model files
	Format of the model files
	The Python file
	The QGraf file
	The FORM file

	Standard Model (sm)
	Synopsis
	Particle content
	Parameters

	GoSam directory structure

