
GoSam Manual

Thomas Reiter

Version February 10, 2012

Contents

1 Introduction 3

1.1 Synopsis . 3

1.2 Conventions . 3

2 Setup 4

2.1 Prerequisites . 4

2.2 Download . 5

2.2.1 Subversion . 5

2.2.2 HTTP Download . 5

2.3 Installation . 5

2.4 Directory Structure . 6

3 Setup of a Process 8

3.1 Introduction . 8

3.2 Example: e+e− → tt̄ at NLO in QCD . 8

3.3 Process Directory Structure . 11

3.4 Code Generation and Compilation . 12

3.4.1 Customization . 12

3.5 Drawing the Feynman Diagrams . 14

3.6 Import of Model Files . 15

3.6.1 Import from FeynRules . 15

3.6.2 Import from LanHEP . 15

3.7 Handling Big Processes . 16

3.7.1 Grouping of Tree Level Diagrams . 16

3.7.2 Computation of Abbreviations . 17

3.7.3 Splitting the Process . 17

3.8 Advanced Usage . 17

3.9 Advanced Diagram Selection . 18

3.9.1 Restricting the Generation with QGraf . 18

3.9.2 Selecting Diagrams by their Number . 18

3.9.3 Filtering Diagrams in Python . 18

4 The Binoth Les Houches Accord Interface 21

4.1 Initialisation Phase . 21

4.1.1 Command Line Arguments of gosam.py --olp 22

4.1.2 GoSam Extensions to the Original Standard 24

4.1.3 Advanced Usage . 25

4.2 Runtime Phase . 26

4.2.1 API Functions . 27

4.2.2 The OLP Socket Protocol . 29

A Conventions of the Amplitude 31

A.1 Convention of golem95 . 31

A.2 Convention of GoSam . 31

B Explicit Reduction of the R2 Terms 33

C The included Model Files 35

C.1 Format of the Model Files . 35

C.1.1 The Python File . 35

C.1.2 The QGraf File . 36

C.1.3 The Form File . 36

C.2 Standard Model (sm) . 38

C.2.1 Synopsis . 38

C.2.2 Particle Content . 39

C.2.3 Parameters . 40

D Template for a Process Setup File 41

2

1 Introduction

1.1 Synopsis

GoSam is a general one-loop evaluator for matrix elements. The pro-
gram produces Fortran 95 code from a given process description by
evaluating Feynman diagrams and translating the associated one-
loop diagrams into a numerical representation of the numerator
such that it can be evaluated and reduced numerically with either
the golem95 library [BGH+09, CGH+11] or Samurai [MORT10]
or PJFry [Yun11, FR11].

1.2 Conventions

In this manual, shell commands are indicated by lines starting with
a dollar sign ($) and are given for the bash shell only. Lines that are
broken for type setting reasons and should continue the previous
line(s) start with a ↪→.

Python program fragments are denoted by the ‘>>>’ and ‘...’ (for
continuation lines) prompts.

2 Setup

2.1 Prerequisites

The generation of matrix element code using GoSam can be un-
derstood as a three step process, although the three steps are not
necessarily obvious to the user. In principle, each step could be run
on a different machine and the programs listed below only need to
be available during the respective step.

1. During the setup of the process directory Python and
QGraf need to be installed. This phase is initiated by run-
ning gosam.py or any user written Python script of similar
functionality.

2. During the code generation only Form and haggies are
run. This phase is initiated by running make source.

3. During the compilation and running of the matrix el-
ement a Fortran 95 compiler and the chosen reduction li-
braries need to be installed. At the level of the matrix ele-
ment, this phase is initiated by running make compile. Please
note that running make compile will invoke make source if
the latter has not been run successfully before that.

Before running the GoSam package, Please ensure that the following
programs are available on your system. The numbers indicate dur-
ing which phase of the code generation the tools will be required.

QGraf [Nog93] is required in version 3.1 or higher and can be down-QGraf (1)
loaded from http://cfif.ist.utl.pt/~paulo/qgraf.html.

This program has been tested with Python versions 2.6, 2.7 andPython (1)
3.1. Please see also http://python.org.

You will need Form [Ver00] version 3.3 (build 11–aug–2010 or later).Form (2)
The most recent version is available from http://www.nikhef.nl/

~form/.

The code generator haggies [Rei10] is included in the GoSam dis-haggies (2)
tribution already. Alternatively, it can also be obtained separately
from the URL http://sourceforge.net/projects/haggies/. haggies
requires Java in version 1.5 or higher. The current version of GoSam
requires haggies in version 1.1 or higher.

For one-loop calculations, at least one of these three libraries isgolem95/Samurai/PJFry
(3) required. If the program is used for the extraction of the R2 term

only, the libraries are not required.

http://cfif.ist.utl.pt/~paulo/qgraf.html
http://python.org
http://www.nikhef.nl/~form/
http://www.nikhef.nl/~form/
http://sourceforge.net/projects/haggies/

• golem95 can be downloaded from http://projects.hepforge.

org/golem/.

• Samurai can be downloaded from http://projects.hepforge.

org/samurai/.

• PJFry can be obtained via git from https://github.com/

Vayu/PJFry/.

The documentation is based on the LATEX-class refrep, which ap-refrep.cls (3)
pears not to be in the default installation of all LATEX distributions.
It can be downloaded from http://www.ctan.org/ as part of the
refman package. This file is only needed if one intends to run make

doc, which generates some documentation for the matrix element.

Please note that these programs might have license policies which! →
are different from the license applying to GoSam. The authors of
GoSam do not take any responsibility for any problems related to
the above mentioned software packages.

2.2 Download

The GoSam source code can be downloaded either via subversion

or via HTTP download.

2.2.1 Subversion

You can check-out a working copy of the repository with the com-
mand

$ svn co http://svn.hepforge.org/gosam/trunk/ gosam-1.0

This will create a folder gosam-1.0 in your current directory. Au-
thenticated users can use the URL

$ svn co svn+ssh://svn.hepforge.org/hepforge/svn/

↪→gosam/trunk/ gosam-1.0

to gain read and write access to the project files.

2.2.2 HTTP Download

Under http://www.hepforge.org/downloads/gosam/ you can down-
load the sources of GoSam using a web browser or a HTTP client
like wget or curl. If you received GoSam as a tar-ball you can
unpack it using the command

$ tar xzvf gosam-1.0.tar.gz

2.3 Installation

GoSam is distributed as a Python package. The installation of the
source package is done by running the setup script. One of the
following scenarios will be encountered most probably:

5

http://projects.hepforge.org/golem/
http://projects.hepforge.org/golem/
http://projects.hepforge.org/samurai/
http://projects.hepforge.org/samurai/
https://github.com/Vayu/PJFry/
https://github.com/Vayu/PJFry/
http://www.ctan.org/
http://www.hepforge.org/downloads/gosam/

• If the Python installation resides in /usr or /usr/local and
the user has super-user privileges:

$ sudo python setup.py install

• If the user wants (or has to) maintain an alternative instal-
lation path for Python modules. < XXXX > here denotes the
name of the alternative installation tree:

$ python setup.py install --prefix=<XXXX>

The prefix option can also be permanently set in the user’s
pydistutils config file1 by adding the following lines.

[install]

prefix=<XXXX>

After successful installation the user should also update the
environment variables

PATH=$PATH:<XXXX>/bin

PYTHONPATH=$PYTHONPATH:<XXXX>/lib/python<version>

↪→/site-packages

2.4 Directory Structure

The GoSam source directory has the structure as described below:

This directory contains the documentation and example setup files.doc/

You can run make in this directory to generate the document
refman.pdf; this is the document you are currently reading.

For each implemented model this directory contains the QGrafmodels/

model file (no extension), a Form interface (*.hh) and a Python

module (*.py). Currently, only the Standard Model (sm) is dis-
tributed with GoSam. A second version of the Standard Model
(smdiag) implements diagonal flavour structure (VCKM = diag{1, 1, 1})
The structure of the model files is discussed in more detail in Chap-
ter C.1. Model files for the MSSM based on LanHEP [Sem10] and
FeynRules/UFO [DDF+11] can be found in the directory examples/model/.

Contains templates for the creation of the files in the process direc-templates/

tory. The contents are transformed by the class golem.util.parser.Template
and its subclasses in golem.templates.*. The translation of the
templates is controled by the file templates.xml of the same di-
rectory.

All model independent Python modules can be found in this direc-src/python/

tory tree.

Here one finds all Form files which are not part of the template.src/form/

This directory is created during building and installation of thisbuild

1 On Unix systems and MacOS this file is called $HOME/.pydistutils.cfg, on
Windows it is %HOME%\pydistutils.cfg.

6

package by running setup.py. The files in this directory are of
temporary nature and can be safely removed.

This directory is created by running setup.py with the sdist ordist

bdist command and contains the distributable package files. To
create a tar-ball from the working copy, Please run

$ python setup.py sdist --formats=gztar

For more information please run

$ python setup.py --help-commands

This directory contains some simple example processes for whichexamples

GoSam has been compared to the literature.

Files in this directory are used by gosam.py --olp, which is GoSam’solp

implementation of the Les Houches interface for one-loop programs [BBD+10].

7

3 Setup of a Process

3.1 Introduction

This chapter provides a step by step guide how to set up a new
process.

In order to generate the matrix element for a given process one has
to create a process specific setup file, which we call process card.

The syntax of this file is closely related to that of Java .properties

files. The detailed syntax and a full list of options are given in
Appendix D. Here we first give a commented example, which should
be sufficient to explain the most important features of a process
card.

3.2 Example: e+e− → tt̄ at NLO in QCD

It is recommended to generate and modify a template file for the
process card instead of starting from scratch. This can be done by
invoking the shell command

$ gosam.py --template eett.in

This would generate the file eett.in with some documentation
for all accepted options. The options are filled with some default
values, which can be set in a global configuration file. The script
will search1 in the GoSam directory, in the user’s home directory
and in the current working directory for a file named ‘.golem’
or ‘golem.in’. Such a file can be generated with the following
command:

$ golem-config.py > golem.in

In the following brief tutorial it is assumed that the process e+e− →
tt̄ should be calculated to order O(α)O(αs) (virtual corrections);
the tree-level process is of order O(α). We neglect the exchange of
a Z or a Higgs boson and treat the electron massless. The output
directory is assumed to be in the relative path eett.

Listing 3.1: eett.in

1 process_path=eett

2 process_name=eett

3 in= e+, e-

4 out= t, t~

5 model= sm

1 in this order

6 order= gs, 0, 2

7
8 qgraf.options=nosnails ,notadpoles ,onshell

9 qgraf.verbatim =\

10 true=iprop[Z, 0, 0];\n\

11 true=iprop[H, 0, 0];

12 zero=me

13 one=gs ,e

14
15 extensions=samurai

16 samurai.fcflags=‘pkg -config --cflags samurai ‘

17 samurai.ldflags=‘pkg -config --libs samurai ‘

The above lines are discussed one by one. The line numbers on
the left are only included for better readability and must not be
included in the setup file.

1 The option process path specifies the directory to which
all generated files and directories are written. The directory
which is specified here must already exist.
Specification of a process path is mandatory.

2 Setting a process name is optional but recommended. All
module names will be prefixed with the process name (e.g.
precision → eett precision). This will avoid name con-
flicts if at a later stage more than one matrix elements are
linked into one executable.

3–4 The options in and out specify the particles of the initial and
final state. The particle names must be defined in the selected
model file. As the model files usually define mnemonics for
the particle names there might be several ways of specifying
the same process. Instead of ‘e+’ one could have written
‘ep’ or ‘positron’. For a complete list of alternative particle→ Appendix C

names please refer to the documentation of the according
model file.
Specifying in and out particles is mandatory.

5 The option model specifies which model files should be used
in order to generate and evaluate the diagrams.
This option is mandatory.

6 The option order is a comma separated list with three en-
tries. The first entry specifies a symbol that denotes a cou-
pling constant. In the Standard Model file sm the only two
possibilities are ‘gs’ for the strong coupling constant gs and
‘e’ for the electro-weak coupling. The second number is the
power of the chosen coupling constant for the tree-level di-
agrams and the third parameter specifies the power of that
coupling constant for the one-loop diagrams. Note that the! →
numbers refer to the powers in the diagrams of the amplitude

9

rather than the squared amplitude. In the above example the
string ‘gs, 0, 2’ specifies that the tree-level diagrams should
be of order g0

s and the one-loop diagrams should be of order
g2
s and an unspecified power of e in both cases. If there is no

tree level, i.e. the process is loop induced, the keyword NONE

should be put as second item in the list, instead of the tree
level power of the coupling.

The value of this option is translated into a vsum constraint
in the file qgraf.dat.
This option is mandatory.

8–11 The option qgraf.options creates the line ‘options=. . . ;’ in
the file qgraf.dat. The value of the option qgraf.verbatim

is passed verbatim to the file qgraf.dat. In our example
we specify that loops of size one and self-energy insertions
at external lines should be omitted in the graph generation.
Lines 9–11 suppress the generation of diagrams containing
Higgs and Z bosons. As these commands are passed verbatim! →
to QGraf no mnemonic names are allowed here, e.g. the Higgs
particle has to be denoted by ‘H’ and cannot be replaced by
‘h’. For a complete list of available options, Please consult
the QGraf manual. For a complete list of particle names see
Appendix C.2 resp. the documentation of the model file.
These options can be omitted.

12–13 The keywords zero and one specify a set of symbols that
should be treated as zero (resp. one). These simplifications
are applied at the symbolical level. Only symbols that ap-
pear in the Form interface of the model file should be specified
here (masses, couplings, CKM-matrix elements, etc). In the
example we specify the electron mass ‘me’ to be zero and we
do not keep the coupling constants in the calculation explic-
itly (gs = e = 1).
These options can be omitted.

15 The option extensions contains a list of extensions to the
core of the program.

16–17 For each extension one can add options of the form exten-
sion.name. Currently the program is scanning for options of
the form extension.ldflags and extension.fcflags. These
options are copied to the contens of the according variables
(FCFLAGS and LDFLAGS) in the makefiles.

In order to populate the specified process directory with files one
invokes

$ gosam.py eett.in

10

3.3 Process Directory Structure

After running golem with an appropriate setup file the process
directory contains a number of files which are described below.

This directory contains files which are only relevant for code gener-codegen/

ation. These files will therefore not be included in a tar-ball created
with make dist.

Fortran files which are common to all helicity amplitudes and to thecommon/

constructed matrix element code. This directory is always compiled
first.

Contains all files (apart from pyxotree.tex and pyxovirt.tex)doc/

which are necessary for creating doc/process.ps, which lists all
Feynman diagrams of this process, together with colour and helicity
info.

This directory contains all files for a specific helicity amplitude.helicity*

The labeling of the helicities can be found in doc/process.ps. Be-
fore invoking make source, this directory only contains the make-
files.

This folder contains the code to combine the helicity amplitudesmatrix

into a matrix element. Here one also finds the test program test.f90.
This folder is always compiled last.

The files from the model/ directory of GoSam. The original filesmodel,model.hh,model.py

are renamed, e.g. sm → model, sm.py → model.py and sm.hh →
model.hh.

The diagram files generated by QGraf.diagrams-[01].hh

This script facilitates linking with external programs. For details,config.sh

run

$ sh ./config.sh -help

contains the process dependent definitions for Form. This file isprocess.hh

used by golem.frm to generate the expressions for each diagram
in every helicity configuration.

contains the on-shell conditions, the number of incoming particlesprocess.dat

and an expression for momentum conservation. This file is needed
by the program golem-analyzer.py.

Defines dependencies between parameters of the model files.func.txt

This files contains the settings which might need to be modified byMakefile.conf

the user. Please check the contents of this file if you have trouble
running the makefiles.

These two files are part of each directory. Makefile.source isMakefile

Makefile.source used when calling make source. Running make from the process
directory will pass through all subdirectories. The following targets
of make are recommended for direct use:

11

help : lists all major targets.

source : generate source files, mainly Fortran 95 files.

compile : compile the Fortran 95 sources.

dist : create a tar-ball of the source files.

clean : remove object files and intermediate files.

very-clean : remove files including targets of make source.

doc : create various documents related to the process. To obtain a
description of the topologies, you need to run source before
make doc.

3.4 Code Generation and Compilation

The Fortran 95 code is generated by the command

$ make source

and can be compiled using

$ make compile

Please note that the compile target invokes the source target if
necessary.

A simple test program, which gives the value of the amplitude
at a randomly generated phase space point, can be found in the
directory matrix/, in order to compile and run it, type

$ cd matrix $ make test.exe $./test.exe

The program will generate a file debug.xml, which, depending on
the settings contains the values of helicity amplitudes and diagrams
for a set of phase space points.

3.4.1 Customization

Runtime Parameters. Many settings can be changed without
recompiling the code, by creating and modifying the file matrix/param.dat.
This file has a very simple format:

• Lines starting with a comment character (‘!’, ‘#’, ‘;’) in the
first column and blank lines are ignored.

• All other lines have the format

name = float

or
name = float, float

where the first line defines a real number and the second line
defines a complex number, and name is a parameter de.

12

• Whitespace is ignored but must not appear inside names or
literals. Physical lines can not be continued nor can multiple
entries appear on one line.

The list of recognized names can be found in the file common/model.f90.
In addition there are some model independent parameters:

samurai scalar selects a library of scalar integrals (see Samu-
rai documentation).

samurai test sets a method to detect unstable points (see
Samurai documentation).

samurai verbosity sets the verbosity level of Samurai; it should
be set to zero in a production environment (see
Samurai documentation).

renormalisation An integer number indicating if no renormal-
isation (0) or β-function renormalisation (1,
QCD only) should be applied. Other values
are reserved for future extensions.

gaugei o for the external vector particle with index i
(e.g. gauge1o, gauge2o. . .), if not defined as
a constant.

gaugei z as gaugei o. The polarisation vector is trans-
formed into

εµ(ki)→ gaugeio · εµ(ki) + gaugeiz · kµi

This allows for a quick check of gauge invari-
ance.

Furthermore, all model constants that have not been specified as
zero or one can be set in this way. One can can re-set, for example,
the value for the Higgs mass using the entry

mH = 124.5

Please note that upper and lower case letters have to be distin-
guished and that the names need to be spelled exactly as defined
in model.py.

Compile Time Parameters. Other configuration options can
be found in the file common/config.f90 but require the recompila-
tion of the source code (make clean; make compile). Examples

of options contained in config.f90 are

13

ki the floating point kind used throughout the calculation.
debug lo diagrams controls if information about the tree level diagrams is

written to the output file.
debug nlo diagrams controls if information about the loop-diagrams is written

to the output file.
include eps terms controls if terms of order ε multiplying poles are taken

into account.
include eps2 terms controls if terms of order ε2 multiplying double poles are

taken into account.
include color avg factor controls if the color averaging factor for inital state par-

tons is multiplied to the final result.
include helicity avg factor controls if the helicity averaging factor for inital state

particles is multiplied to the final result.
include symmetry factor controls if the symmetry factor for identical final state

particles is multiplied to the final result.
use sorted sum controls if the diagrams are summed using the algorithm

Malcolm [Mal70], which reduces the error accumulated in
presence of large cancellations.

3.5 Drawing the Feynman Diagrams

In order to print out the diagrams the makefile contains the target
doc which produces the file process.ps. We use LATEX plus the
package axodraw [Ver94] to create the graphical representation.

The layout of the diagrams is determined by the algorithm used
in feynMF [Ohl95], modelling the propagators by springs. The
implemented algorithm works in two steps: first, the topology is
disentangled by ordering the external legs such that the diagram
can be drawn as a planar graph. The coordinates ek of the external
legs are fixed along a contour around the drawing area.2 In a
second step the remaining degrees of freedom, the coordinates of
the vertices vi = (xi, yi), are fixed by minimizing the Lagrangian

L(v1, . . . , vn; e1, . . . , eN) =

1

4

n∑
i,j=1

tij (vi − vj)2 +
1

2

n∑
i=1

N∑
k=1

λik (vi − ek)2 (3.1)

Here, n is the number of vertices and N is the number of external
legs. Minimization of the Lagrangian leads to a system of linear

2 Currently, this contour is chosen as an ellipse but in principle any convex
shape could be used.

14

equations, which can easily be solved.

∂L

∂vr
= 0

⇔1

2

n∑
i,j=1

tij (vi − vj) · (δir − δjr) +
n∑
i=1

N∑
k=1

λik (vi − ek) · δir = 0

⇔Mrjvj ≡
n∑
j=1

trj (vr − vj) +

(
N∑
k=1

λrk

)
vr =

N∑
k=1

λrkek

In the last step we used the symmetry of tij . The matrix M can
be written as

Mrc =

{ (∑
i 6=r tri

)
+
(∑N

k=1 λrk

)
, r = c

−trc, otherwise
(3.2)

The symbol tij is the sum of the spring constants of all propagators
connecting vertices i and j; similarly, λik is the spring constant of
the leg k if it is connected to vertex i and zero otherwise.

3.6 Import of Model Files

Examples about how to import model files can be found in the
subdirectory examples.

3.6.1 Import from FeynRules

A model description in the UFO [?] format consists of a Python

package stored in a directory. In order to import the model into
GoSam one needs to set the model variable specifying the keyword
FeynRules in front of the directory name, where we assume that
the model description is in the directory $HOME/models/MSSM UFO.

model= FeynRules,$HOME/models/MSSM UFO

3.6.2 Import from LanHEP

In order to use model files generated by LanHEP the following
steps have to be taken:

1. When generating the tables using LanHEP, one should in-
clude the following option to ensure that the generated tables
have the correct headings3. The number of spaces in the col-
umn headers are irrelevant as long as the columns are wide
enough to contain the respective values.

prtcformat

fullname: ’ fullname ’,

name: ’ name ’,

3 GoSam relies on the column names rather than some specific order.

15

aname: ’ aname ’,

spin2: ’ spin2 ’,

mass: ’ mass ’,

width: ’ width ’,

color: ’ color ’,

aux: ’ aux ’,

texname: ’ texname ’,

atexname: ’ atexname ’,

pdg: ’ pdg ’.

2. If the model file is not already equipped with pdg codes the
user might want to use the prtcprop command in LanHEP
to add the relevant codes.

3. In the setup file, one needs to specify the model as a pair of
path and integer number. If the table files are under the di-
rectory lanhep/ued/ in the tables func7.mdl, lgrng7.mdl,
prtcls7.mdl and vars7.mdl, the correct statement in the
setup file would be

model=lanhep/ued, 7

4. The use of user defined functions (external func in Lan-
HEP) requires an adaption of the file codegen/haggies-l0.in.
If one wants to use the function double foo(double,double)

the following line sould be added.

@define mdlfoo : real, real -> real =

"foo(%2$s, %3$s)";

The function also needs to be declared in codegen/functions.out

in the subroutine init functions

3.7 Handling Big Processes

Although the default settings should work for most cases, very big
processes in terms of the number of diagrams and the size of the
expressions can cause the compiler to become very slow or even to
crash. In this section we discuss solutions which can help to reduce
the load for the compiler and to speed-up the code generation.
It should be mentioned that some of these measures can have a
negative impact on the runtime efficiency of the generated code.

3.7.1 Grouping of Tree Level Diagrams

By default the expressions of all tree-level diagrams are grouped
into one file. This has the advantage that subexpressions which
appear in several tree-level diagrams can be reused across the am-
plitude. In some cases it can happen that the sum of all terms of
the tree-level diagrams is too big to be compiled in one subroutine.
In this case it is recommended to set the option group to false.

16

3.7.2 Computation of Abbreviations

The constant, i.e. q- and µ2 independent parts of the numerators
of the one-loop diagrams are factored out from the numerators and
computed as abbreviations. In some cases the list of abbreviations
is too big to be compiled into one subroutine. One can restrict the
number of instructions that go into a single subroutine by setting
abbrev.limit to a positive number in the setup file. The variable
abbrev.level, which by default is set to helicities, can be set
to groups or diagrams if the list of abbreviations common to a
helicity configuration is too large.

If the list of abbreviations causes haggies to crash, one needs to
increase the amount of memory reserved for Java. This can be done
by adding the -Xmx option to the call of Java. A typical setting of
the variable haggies.bin would be

haggies.bin=java -Xmx3g -jar

↪→ ${GOLEMPATH}/haggies/haggies.jar

which assigns 3 GB of memory to Java.

3.7.3 Splitting the Process

If a process becomes too big in order to be linked4 there are some
possibilities to split the process into independent programs:

• the generation of a subset of the helicity configurations, e.g.
one helicity configuration per process directory.

• the generation of a subset of diagrams. If the diagrams are
not split according to gauge invariant subsets the user should
ensure that all subsets are called with the same set of phase
space points. An easy way of splitting the diagrams into
subsets is by using the option select.nlo=〈first〉:〈last〉,
where first and last refer to the diagram numbers in pro-
cess.ps.

3.8 Advanced Usage

The call to the executable gosam.py can be simulated inside more
complex Python programs. It is an easy exercise to run the file
generation in user defined Python scripts as long as one includes
the module files in the environment variable PYTHON PATH. The
following script emulates the program gosam.py:

>>> from golem . u t i l . c o n f i g import P r o p e r t i e s
>>> from golem . u t i l . main misc import ∗
>>> props = P r o p e r t i e s ()

4 Currently, most systems support programs to a size up to 4 GB. Although
64 bit systems can handle a much bigger address space, the current limitation
comes from some legacy code in the GNU linker.

17

>>> props . s e tProper ty (” in ” , [”e+” , ”e−”])
>>> props . s e tProper ty (” out ” , [” t ” , ” t ˜”])
>>> # . . . p o p u l a t e props wi th f u r t h e r v a l u e s . . .
>>> workflow (props)
>>> g e n e r a t e p r o c e s s f i l e s (props)

3.9 Advanced Diagram Selection

GoSam implements several ways of selecting subsets of diagrams:

• by restricting QGraf,

• by selecting specific diagrams by their number,

• by defining filters using Python.

3.9.1 Restricting the Generation with QGraf

The options for restricting the set of diagrams at the level of the
diagram generation is the most efficient way since this happens
already at the earliest possible stage. However, QGraf’s built-in
filters are sometimes too limited in order to express more advanced
criteria.

GoSam allows one to pass information to QGraf through the option
qgraf.options and through qgraf.verbatim, qgraf.verbatim.lo
and qgraf.verbatim.nlo. For the exact syntax the user is refered
to the QGraf documentation.

3.9.2 Selecting Diagrams by their Number

An a posteriori selection ’by eye’ can be achieved after all (also
unwanted) diagrams of a process have been generated and in-
spected in doc/process.ps. The user can then modify the options
select.lo and select.nlo and rerun gosam.py.

3.9.3 Filtering Diagrams in Python

The user can write short Python functions in order to decide whether
a specific diagram is to be taken or not. This function should return
True for all diagrams which are kept, and False for all diagrams
which should be discarded. These functions are passed by the op-
tions filter.lo and filter.nlo.

Longer functions should be defined in an external file, which can
be passed using filter.module.

When writing a filter the one can use the predefined particle lists
QUARKS, LEPTONS, FERMIONS and BOSONS. The underscore () matches
any field.

18

A diagram object d has the following methods which are inteded
to be used in filters. Alternative predefined functions and functors
are also given.

d.rank() : returns the tensor rank of a diagram.
RANK ≡ λd.(d.rank())

d.loopsize() : returns the number of propagators in the loop of a diagram.
LOOPSIZE ≡ λd.(d.loopsize())

d.sign() : computes the sign coming from closed fermion loops.
SIGN ≡ λd.(d.sign())

d.isNf() : reports if a diagram contains a closed quark loop of size two
where all loop propagators are massless.
NF ≡ λd.(d.isNf())

d.isMassiveQuarkSE() : returns True if the diagram contains a QCD self energy in-
sertion at a massive quark line.
MQSE ≡ λd.(d.isMassiveQuarkSE())

d.isScaleless() : returns True if the loop integral associate with this diagram
carries no scale.
SCALELESS ≡ λd.(d.isScaleless())

d.vertices(f1,f2,...) : returns the number of vertices in the diagram with the spec-
ified fields. The arguments f1, f2, . . . are lists of field names.
VERTICES(f1, f2, . . .) ≡ λd.(d.vertices(f1, f2, . . .))

d.loopvertices(f1,f2,...) : same as vertices, but only counts vertices which have loop
propagators attached.
LOOPVERTICES(f1, f2, . . .) ≡ λd.(d.loopvertices(f1, f2, . . .))

d.iprop(f,**opts) : returns the number of propagators of the given fields. Op-
tional arguments are momentum to specify the momentum of
the propagator, twospin to filter by the 2× the spin, massive
to specify whether massive or massless propagators should
be considered and color to filter for certain color represen-
tations.
IPROP(. . .) ≡ λd.(d.iprop(. . .))

d.chord(f,**opts) : same as iprop but only counts loop propagators.
CHORD(. . .) ≡ λd.(d.chord(. . .))

d.bridge(f,**opts) : same as iprop but only counts propagators which are not in
a loop.
BRIDGE(. . .) ≡ λd.(d.bridge(. . .))

d.QuarkBubbleMasses() : returns a list of all different masses in a closed quark loop of
size two or an empty list if the diagram is not a quark bubble.
QBMASSES ≡ λd.(d.QuarkBubbleMasses())

Furthermore, the following predefined filters exist:

NFGEN(f1,f2,...) : for closed quark loops of size two this filter returns true only
if all loop propagators belong to one of the fields in the ar-

19

gument list. For all diagrams which are not quark bubbles it
returns True.

AND(filter1,filter2,...) : returns True if all filters in the argument list return True.

OR(filter1,filter2,...) : returns True if at least one filter in the argument list returns
True.

NOT(filter) : returns True if the argument evaluates to False.

TRUE : always returns True.

FALSE : always returns False.

20

4 The Binoth Les Houches Accord Interface

4.1 Initialisation Phase

The script gosam.py --olp which comes with GoSam can be used
to generate matrix elements compatible with the specifications of
the Binoth Les Houches Accord [BBD+10]. This script expects at
least the name of an order file. This order file is usually but not
necessarily created by a Monte Carlo program. An example file for
the partonic 2→ 3 processes of pp→ tt̄+ jets is given below:

1 MatrixElementSquareType CHsummed
2 IRregularisation tHV
3 OperationMode CouplingsStrippedOff
4 SubdivideSubprocess yes
5 AlphasPower 3
6 CorrectionType QCD
7
8 # Here comes the l i s t o f s u b p r o c e s s e s
9 # s p e c i f i e d through PDG codes

10 # g g → t t−bar g
11 21 21 → 6 −6 21
12 # u u−bar → t t−bar g
13 2 −2 → 6 −6 21
14 # u g → t t−bar u
15 2 21 → 6 −6 2

The line numbers are not part of the file. The arrow ‘→’ is gener-
ated by the two characters ‘->’. The following options are part of
the Standard and accepted by GoSam:

MatrixElementSquareType : accepts the values Hsummed, Csummed, Haveraged, Caveraged,
CHsummed, CHaveraged.

The value NOTsummed is not supported. Sensible combi-
nations are also allowed, as in

MatrixElementSquareType Hsummed Caveraged

In GoSam this statement is optional. Any quantity which is
not explicitely averaged is assumed to be summed

CorrectionType : accepts the values QCD, QED and EW, whereas GoSam

does not distinguish between the latter two (this behaviour
might change in the future when appropriate model files are
available).

This statement is mandatory and must not be omitted.

IRregularisation : accepts the values tHV (’t Hooft-Veltman scheme) and DRED
(dimensional reduction). The value CDR (conventional di-
mensional regularisation) is not supported and therefore re-
jected.

This statement is mandatory and must not be omitted.

MassiveParticleScheme : accepts the value OnShell only. At the moment this option
has no effect on the generation of the matrix element. This
statement is optional; if it appears in the order file a warning
is issued, reminding the user that no UV-counterterms for
massive particles are implemented yet.

IRsubtractionMethod : accepts the value None only. GoSam does not provide any
subtracted output.

This statement is optional.

ModelFile : accepts the name of parameter file in the Les Houches Accord
format. The script reads the parameter file setting all masses
to zero which are not specified explicitly to be non-zero.

This statement is mandatory.

It is recommended to use absolute paths here as the file will
later be read in the function OLP Start in the matrix element
code, which might be located elsewhere.

OperationMode : accepts the value CouplingsStrippedOff only.

This statement is optional. If it is given, the coupling con-
stants are stripped off from the amplitude.

SubDivideSubProcess : accepts logical values (yes or no).

If the value is yes a separate channel for each helicity is
assigned. Otherwise there will be one channel per subprocess.

This statement is optional. Its default value is no.

AlphasPower : the power of αs of the Born cross-section. At least one of the
options AlphaPower and AlphasPower has to be speci-
fied.

AlphaPower : the power of α of the Born cross-section. At least one of the
options AlphaPower and AlphasPower has to be speci-
fied.

The options which have been proposed for electro-weak corrections
are currently not supported.

4.1.1 Command Line Arguments of gosam.py --olp

The syntax for the invocation of gosam.py is as follows:

$ gosam.py --olp {〈option 〉}
↪→〈order file 〉 {〈order file 〉}

22

↪→{〈key 〉=〈value 〉}

The allowed options are given below. The list of 〈key〉=〈value〉-
pairs supplements the options given in the configuration files.

-h, --help : Prints a help screen with all available command line options
and exits.

-d, --debug : With this options the script will print lots of extra informa-
tion to the screen, which is usually not useful for non-experts.

-v, --verbose : The script will print information e.g. about creating directo-
ries and reading files.

-w, --warn : Warnings and errors are printed. This is the default setting.

-q, --quiet : Only errors are printed, no warnings are issued.

-lfile, --log-file=file : All messages are written to a log file. When one or more
log files are specified the information is still written to the
screen with the latest specified level of detail. The following
example will read the order file test.olo; messages at the
debug level will be written to detailed.log, warnings and
errors are written to short.log and only errors are printed
to the screen.

$ gosam.py --olp -d -ldetailed.log -w

↪→ -lshort.log -q test.olo

-cfile, --config=file : Overlay default config files by the specified file. Usually, the
script first searches in the default locations for configuration
files. Afterwards, all files specified by -c options are read in
the order in which they are encountered. Values which are
already set by earlier files will be overwritten. See also option
‘-C’.

-C, --no-defaults : The script will not search for configuration files (.golem and
golem.in) in the standard locations (GoSam installation di-
rectory, user’s home directory and current working direc-
tory).

-f, --force : Overwrite contract files without asking. The default be-
haviour is that contract files are not overwritten. If a contract
file already exists the program gives an error message.

-e, --use-single-quotes : Activates syntax extensions that allow the use of single quotes
in order and contract files (See Section 4.1.2).

-E, --use-double-quotes : Activates syntax extensions that allow the use of double quotes
in order and contract files (See Section 4.1.2).

-b, --use-backslash : Activates syntax extensions that allow the use of backslash
escape sequences in order and contract files (See Section 4.1.2).

-i, --ignore-case : Activates syntax estensions which make the parsing of order
and contract files case-insensitive (See Section 4.1.2).

23

-x, --ignore-unknown : Unknown statements or values in order and contract files will
be ignored. The default behaviour is that unknown state-
ments and/or values will lead to an error message.

-ofile, --output-file=file : Specifies the name of the contract file(s). The following set
of wildcard sequences can be used to derive the name of the
contract file from the name of the order file. A value of ‘-’
writes to the standard output.

%f : The full file name (e.g. ‘dir/process.olo’)

%F : The file name without any leading path (‘process.olo’)

%p : Path name only (‘dir/’)

%s : The stem of the file name (‘process’)

%e : The extension of the file name (‘.olo’)

By default this option is set to ‘%p%s.olc’.

-Ddir, --destination=dir : Chooses the output directory, to which each process is writ-
ten. The same wildcards as above can be used. By default,
all output is written to the current working directory. It is
therefore not recommended to set this option using wildcards
when more than one order file is specified.

-tpath, --templates=path : Sets an alternative templates directory or template XML-file.

-z, --scratch : Overwrites all process files, including those which otherwise
would be preserved (Makefile.conf, config.f90 etc).

4.1.2 GoSam Extensions to the Original Standard

Modern file systems allow for path names which cannot be ex-
pressed in the original formulation of the Les Houches accord.
Therefore GoSam implements syntax extensions for order and con-
tract files for including special characters in statements, especially
in file names (as in ModelFile).

double qoutes : This syntax extension proposes that inside a pair of double
quotes (ASCII character #34) special characters lose their
special meaning. The backslash acts as escape character,
with the following set of escape sequences being allowed:

\t expands to a horizontal tabulator character (ASCII char-
acter #9),

\n expands to a new line character (ASCII character #10),

\f expands to a form feed character (ASCII character #12),

\r expands to a carriage return character (ASCII charac-
ter #13),

24

\xhh , where hh are two hexadecimal digits expands to the
character of which the ASCII code is the hexadecimal
number represented by the digits hh.

• any other character following a backslash expands to
itself, in particular \" and \\.

single quotes : This syntax extension proposes that inside a pair of single
quotes (ASCII character #39) all characters lose their special
meaning. There is no escape character. A literal single quote
is generated by a sequence of two single quotes (Pascal like).

backslash escapes : This syntax extension proposes that any character following
a backslash loses its special meaning.

Different extensions might prove useful on different operating sys-
tems. On a Windows system, the file name F:\Golem Files\mssm.slha

can only be expressed with the proposed syntax extensions and
would have the following three equivalent representations:

• F:\\Golem\ Files\\mssm.slha

• ’F:\Golem Files\mssm.slha’

• "F:\\Golem Files\\mssm.slha"

The three extensions can be switched on by the command line
options of gosam.py --olp, ‘-E’, ‘-e’ and ‘-b’ respectively.

4.1.3 Advanced Usage

The core functionality of the script gosam.py --olp is implemented
by the function golem.util.olp.process order file, which has
the the following signature:

process order file(order file name, out file, out dir,

conf, templates=None, ignore case=False,

ignore unknown=False, single quotes=False,

double quotes=False, backslash escape=False)

order file name : (character string) name of the order file.

out file : (file object, open for writing) contract file.

out dir : (character string) name of an existing directory to which all
matrix-element files will be written.

conf : (golem.util.config.Properties) configuration shared by
all subprocesses.

templates : (character string) template directory or name of an XML-file.

. . . : all other arguments activate the corresponding syntax exten-
sions.

25

The return value is zero in case of a success and one if an error
occurred.

A list of options read from default config files can be obtained by
the function golem.util.main misc.find config files(). The
following example suggests the usage of the interface from a Python-
based Monte Carlo program

import os
import golem

Monte Carlo program prepars the pro ces s
and w r i t e s order f i l e proc . o l o . . .
(not shown in example)

conf = golem . u t i l . main misc . f i n d c o n f i g f i l e s ()
f = open (” proc . o l c ” , ’w ’)
os . mkdir (” proc /”)

Add own o p t i o n s
conf [golem . p r o p e r t i e s . model] = \

”FeynRules , ${HOME}/ models /mssm ufo”
conf [golem . p r o p e r t i e s . f c b i n] = ” g f o r t r a n ”
e r r f l a g = golem . u t i l . o lp . p r o c e s s o r d e r f i l e (\

” proc . o l o ” , f , ” proc /” , conf)

i f e r r f l a g > 0 :
print ”Problems gene ra t ing OLP”
print ” Please consu l t the f i l e proc . o l c ”

4.2 Runtime Phase

After the script gosam.py --olp or any equivalent program has
been run successfully, the files in the newly created process direc-
tories are compiled by invoking make in the respective top-level
directory. This generates the object file olp module.o which con-
tains all API functions. The library for a given process can be
linked using the script config.sh in the same directory. The make-
file of a client program would typically contain code similar to the
following:

PROCESS PATH=path/ to /your/ process− f i l e s
LDFLAGS+=$ (s h e l l sh $ (PROCESS PATH)/ c o n f i g . sh − l i b s)

The module olp module.f90 uses Fortran 2003 extensions (ISO C BINDING)! →
for establishing a well defined interface for the linker. Older Fortran 95
compilers might therefore not be able to compile this module.
Please refer to the compiler documentation for details.

26

4.2.1 API Functions

The file olp.h contains the following prototypes.

void OLP Start (char∗ , int ∗) ;
void OLP EvalSubProcess (int , double∗ ,

double , double∗ ,double ∗) ;
void OLP Final ize () ;
void OLP Option (char∗ , int ∗) ;

The first two functions are defined exactly as proposed in [BBD+10].
The other two functions extend the original standard. It should,
however, be noted that the generated matrix element code can be
run without any calls to either OLP Finalize or OLP Option.

OLP Start

void OLP Start (char∗ c o n t r a c t f i l e , int∗ s u c c e s s) ;

This function should be called before the first evaluation of the
matrix element. It ensures that all global variables in the matrix
element code are initialized properly. The argument contract file
should receive the (full) name of the contract file which was gen-
erated together with the matrix element. The integer success is
initialized by OLP Start to either the value one, indicating success,
or zero, indicating that an error occurred during initialization.

Matrix elements generated with GoSam will try to read the SLHA
model file specified by the option ModelFile in the contract file.
It is not required that the contract file used in the runtime phase
points to the same model file as used during the initialisation phase.
However, values which were set to zero during initialisation will
remain zero during the runtime phase.

OLP EvalSubProcess

void OLP EvalSubProcess (int l abe l , double∗ momenta ,
double s ca l e , double∗ parameter , double∗ amp) ;

This function retrieves the values for a channel of the OLP for
a given phase space point. A channel might be a subprocess or
a gauge invariant partial amplitude, depending on the settings in
the contract file. The channel is labeled by the argument label.
The second argument is a one-dimensional array holding the 5×N
components of the momenta for an N -particle process. They are
in the order

(E(1), p(1)
x , p(1)

y , p(1)
z ,m(1), E(2), p(2)

x , p(2)
y , p(2)

z ,m(2), . . . ,m(N))

The third argument is the renormalization scale (not its square).
A list of scale dependent parameters is passed in the fourth ar-
gument. Its first entry is expected to be αs(µ). Any further en-
tries are user-defined; the user is expected to adapt the subroutine

27

init event parameters in olp module.f90 if he wishes to make
use of any additional parameters.

The last argument is an array of length four. Its entries are, in this
order,

1. the coefficient of the 1/ε2 pole in the Laurent series of the
interference term between virtual and Born amplitude,

2. the coefficient of the 1/ε pole in the Laurent series of the
interference term between virtual and Born amplitude,

3. the O(1) term in the Laurent series of the interference term
between virtual and Born amplitude,

4. the square of the Born amplitude.

Matrix elements generated by GoSam use the convention that in
case of an error during the evaluation of the matrix element, the
fourth entry is set to (−1). It is therefore recommended that client
programs check for the positiveness of the Born matrix element.

OLP Finalize

void OLP Final ize () ;

This function should be called after the last evaluation of the ma-
trix element. It allows the OLP to close any open file handles, to
release allocated memory and to exit gracefully. Although on most
modern operating systems this is done automatically, it is good
practice and therefore recommended to always call this function
before exiting the program.

OLP Option

void OLP Option (char∗ assignment , int∗ s u c c e s s) ;

This function can be used to update internal parameters of the OLP
which are not part of the standard. The first argument is a char-
acter string containing a textual representation of the requested
assignment. The second argument will be set by the function ac-
cording to the success of the request.

Matrix elements generated with GoSam accept any string which
would also be valid as a (non-comment) line in a parameter file
(see model.f90). Typical calls would be

OLP Option (” samura i t e s t=3” , &f l a g) ;
/∗ The p r e v i o u s c a l l r e q u i r e s
∗ r e i n i t i a l i z a t i o n o f the OLP ∗/

OLP Start (c o n t r a c t f i l e , &f l a g) ;
OLP Option (”Nf=5” , &f l a g) ;
/∗ S e t t i n g the Higgs mass : ∗/
OLP Option (”mH=124.5” , &f l a g) ;

28

4.2.2 The OLP Socket Protocol

The necessity to link the client program each time another OLP
is used might become cumbersome, especially when one likes to
work with more than one OLP at the same time. We have there-
fore developed a socket protocol which enables any client program
to access the same functionality as defined in the Les Houches ac-
cord [BBD+10] through a TCP/IP connection with a server hosting
the OLP. In this way it is possible to access multiple OLPs simul-
taneously and to load OLPs at runtime.

The OLP Socket Server

OLPs generated with GoSam contain additional files in their top-
level directory implementing a server for the OLP Socket protocol.
These files are

olp daemon.c : ANSI-C file with service routines especially network related
routines,

olp daemon.h : ANSI-C file, header for olp daemon.c,

olp protocol.l : Lex/Flex file, part of the grammar definition of the protocol
and

olp protocol.y : Yacc/Bison file, part of the grammar definition of the proto-
col, contains the main program.

These files are compiled with the command

$ make olp daemon EXTRA LDFLAGS=...

It is often necessary to specify the variable EXTRA_LDFLAGS to pro-
vide the necessary run-time libraries of the Fortran 95 compiler.

The compiled program can be run with the following options

$ olp daemon [-p port] [-s|-S] [-f] file-name

-ffile-name : name of a contract file (required).

-pport : port at which the program accepts connections, default: 7711.

-s/-S : forbid resp. allow the SHUTDOWN command, default: allow.

-r/-R : forbid resp. allow the RESTART command, default: allow.

-d : detach from terminal (run as daemon).

OLP Socket Clients

Sample client implementations for C++, Java and Python are pro-
vided in the directory olp/contrib/. Below, a brief example for
the C++ case is given:

o lp : : OLPClient OLP EvalSubProcess (” l o c a l h o s t ” , 7711) ;
OLP EvalSubProcess (0 , num legs , mom, s ca l e ,

29

num param , param , amp) ;
OLP EvalSubprocess . c l o s e () ;

The class OLPClient overwrites the operater () emulating the orig-
inal protocol as closely as possible. For technical reasons, two ad-
ditional arguments (num legs and num param) are required, speci-
fying the number of external legs and the length of the array param

respectively.

Definition of the Protocol

The protocol consists of statements sent by the client to the server.
Each statement is terminated by a newline character. The server
responds with one line starting with a three digit number followed
by a space and an optional message. The three digit number con-
tains the response code. A response code of 200 signals success, all
other values denote an error.

30

Appendix A Conventions of the Amplitude

A.1 Convention of golem95

The integral library golem95 computes integrals of the form∫
µ2εdnk

iπn/2
kµ1 · · · kµr

((k + r1)2 −m2
1) · · · (k + rN)2 −m2

N)
=

rΓ ·
[c−2

ε2
+
c−1

ε
+ c0 +O(ε)

]
(A.1)

where n = (4− 2ε) and

rΓ =
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)
. (A.2)

The integration measure for the internal momentum k is

µ2εdnk

(2π)n
= µ2ε i

2nπn/2
· dnk

iπn/2
=

(4π)ε · i
(4π)2

· µ
2εdnk

iπn/2
. (A.3)

A.2 Convention of GoSam

The factor from above which does not go into the integral definition
of golem95 can be written as

(4π)ε · i
(4π)2

=
(4π)ε

(2π)(4π)

i

2
(A.4)

The factor of i/2 is included in the amplitude definition of GoSam.
The factors (2π) and (4π) are later used to build up a factor of
αx/2π, where αx is either α or αs.

In the following we assume that the coupling constants1 have been
set to one in the setup of GoSam. This ensures that the one-loop
matrix element in QCD is calculated in the MS scheme as

|M|21-loop =
αs
2π

(4π)ε

Γ(1− ε)
·
[c−2

ε2
+
c−1

ε
+ c0 +O(ε)

]
(gn1

1 · · · g
nq
q)

(A.5)
The factor (gn1

1 · · · g
nq
q) are the coupling constants appearing in

the squared tree-level matrix element. GoSam will return the coef-
ficients c−2, c−1 and c0.

The conversion between different conventions for the Γ-functions
is straightforward:

1

Γ(1− ε)
= rΓ +O(ε3) =

(
1− π2

6
ε2

)
Γ(1 + ε) +O(ε3) (A.6)

1 e and gs in the standard model

The relevant terms in the expansion of rΓ are

rΓ = e−γEε
(

1− π2

12
ε2

)
+O(ε3) (A.7)

If one prefers to pull out a factor of e−γEε(4π)ε the appropriate
definition of the matrix element up to terms of O(ε) is

|M|21-loop

e−γEε(4π)ε
=
αs
2π
·
[
c−2

ε2
+
c−1

ε
+

(
c0 −

π2

12
c−2

)]
(gn1

1 · · · g
nq
q)

(A.8)

32

Appendix B Explicit Reduction of the R2 Terms

The R2 term [OPP08] consists of all terms of the numerator con-
taining an explicit ε or µ2 coming from the Lorentz algebra. For
an explicit reduction of these terms, a list of all integrals of the
form ∫

µ2εdnk

iπn/2
N(q̂) · µ2α · εβ

D0 · · ·DN
(B.1)

where either α or β is a positive integer number and the denom-
inators are Di = (q + ri)

2 − m2
i + iδ. Note that integrals where

both α and β are non-zero, will not contribute to the final result.
We expand the above tensor integral and only consider the term
of rank r, similarly to Eq. (208) in Ref. [Rei09]:

In,α,β;µ1...µr
N = (−1)r

Γ(α− ε)
Γ(−ε)

εβ
br/2c∑
l=0

(
−1

2

)l N∑
j1,...,jr−2l=1

×

[
ĝ•• . . . ĝ••r•j1 · · · r

•
jr−2l

]µ1...µr
In+2α+2l
N (j1, . . . , jr−2l). (B.2)

Here, the integral IdN (j1, j2, . . .) denotes a Feynman parameter in-
tegral with the parameters zj1 , zj2 , . . . in the numerator,

IdN (j1, . . . , jp) =

(−1)NΓ

(
N − d

2

)∫
dN�z δz

∏p
ν=1 zjν[

−1
2z

TSz − iδ
]N−d/2 , (B.3)

where dN�z =
∏N
j=1 dzjΘ(zj)Θ(1 − zj) and δz = δ(1 −

∑
i zi). The

square brackets [. . .]µ1...µp expand to the sum of all possible assign-
ments of indices to the ĝ••-tensors where a (one) arbitrary assign-
ment of indices to the momenta r•j is chosen.

We only need to consider integrals containing an UV pole, which
leads to a rational term when multiplied with ε stemming either
from εβ or from

Γ(α− ε)
Γ(−ε)

= (α− 1)!
[
−ε+O(ε2)

]
, forα > 0. (B.4)

The UV divergence comes from the Gamma function

Γ

(
N − n+ 2α+ 2l

2

)
= Γ(ε− (2 + α+ l−N)) ≡ Γ(ε− η) (B.5)

in the Feynman parameter integral In+2α+2l
N . Hence, we examine

further the expression

ε · In+2l+2α
N (l1, . . . , lr−2l) ={

O(ε), η < 0

(−1)N 1
2ηη!

∫
dN�zδz

[
zTSz

]η∏r−2l
i=1 zli , η ≥ 0

(B.6)

The remaining integration can be understood as a special case of
the Feynman parameter identity

1∏N
j=1A

αj
j

=
Γ(α)∏N
j=1 Γ(αj)

∫
dN�z δz

∏N
j=1 z

αj−1
j(∑N

j=1 zjAj

)α (B.7)

for Aj = 1, in which case one finds∫
dN�z δz

N∏
j=1

z
αj−1
j =

∏N
j=1 Γ(αj)

Γ(α)
(B.8)

All phenomenologically relevant, non-zero cases for renormalizable
gauge theories (working in Feynman gauge) are listed below:

In,0,11 = −1

2
S11 (B.9)

In,0,1;µ1
1 =

1

2
S11 · rµ11 (B.10)

In,1,02 = −1

6
(S11 + S12 + S22) (B.11)

In,0,12 = 1 (B.12)

In,0,1;µ1
2 = −1

2
(rµ11 + rµ12) (B.13)

In,0,1;µ1µ2
2 =

1

6
(2rµ11 rµ21 + rµ11 rµ22 + rµ12 rµ21 + 2rµ12 rµ22)

− 1

12
ĝµ1µ2 (S11 + S12 + S22) (B.14)

In,1,03 =
1

2
(B.15)

In,1,0;µ1
3 = −1

6
(rµ11 + rµ12 + rµ13) (B.16)

In,0,1;µ1µ2
3 =

1

4
ĝµ1µ2 (B.17)

In,0,1;µ1µ2µ3
3 = − 1

12

3∑
l=1

[ĝ••r•]µ1µ2µ3 (B.18)

In,1,0;µ1µ2
4 =

1

12
ĝµ1µ2 (B.19)

In,2,04 = −1

6
(B.20)

In,0,1;µ1µ2µ3µ4
4 =

1

4!
[ĝ••ĝ••]µ1µ2µ3µ4 (B.21)

All other integrals of that type are identically zero.

34

Appendix C The included Model Files

C.1 Format of the Model Files

GoSam expects three files for a proper model definition:

〈model〉.hh : Form file containing the Feynman rules

〈model〉.py : Python file

〈model〉 : (no extension) QGraf model file

C.1.1 The Python File

Thy Python file contains the following definitions

model name : a variable of string type containing a human-readable name
for this model, such as “Standard Model (Feyn. Gauge) w/o
Higgs” etc.

particles : a Python dict that contains all particles and anti-particles
of the model. The keys are the QGraf names of the fields; the
values are objects of the class Particle. The constructor has
the arguments

Particle(name, two_spin, mass, color_rep, partner, width=’0’)

mnemonics : a Python dict of human-readable particle names. The values
are objects of the class Particle. It is save to refer to the
dictionary particles.

parameters : a Python dict of model parameters with their default values.
Both key and value are strings.

functions : a Python dict of variable names and initialization expres-
sions. Both key and value are strings.

types : the types of all parameters and functions indicated by ’R’

for real numbers and ’C’ for complex numbers.

latex names : a Python dict assigning LATEX code to the field names. Math
mode is assumed.

line styles : a Python dict assigning line styles to field names. The line
style used when drawing Feynman diagrams. Allowed values
are photon, ghost, scalar, gluon, fermion.

C.1.2 The QGraf File

The propagators in the QGraf file must contain the following func-
tions:

TWOSPIN : twice the spin of the particle.

COLOR : the color representation of the particle ∈ {1, 3, 8}.

MASS : the mass of the particle.

WIDTH : the width of the particle (currently not used).

AUX : must be zero for most fields. Tensor Ghosts, as introduced
by CalcHep have the value 1 here.

CONJ : for self-conjugate particles the value is (’+’), otherwise it is
(’+’,’-’).

The vertices must provide all fields that should be accessible in
VSUM statements and therefore also the ones that GoSam uses in the
order option.

C.1.3 The Form File

There are two possible ways of specifying the Feynman rules in the
Form file. If a model contains only Standard Model like interac-
tions one can make use of the file src/form/vertices.hh in the
GoSam directory and just define the coefficients CL and CR in front
of the vertices. This strategy is implemented by the modelfiles
models/sm. The file Form contains a procedure VertexConstants

which replaces the the vertex constants by their symbols. A QED
example would be

#Procedure VertexConstants
Id CL([f i e l d . em] , [f i e l d . ep] , [f i e l d . ph]) = e ;
Id CR([f i e l d . em] , [f i e l d . ep] , [f i e l d . ph]) = e ;

#EndProcedure

In the header of the Form file all model specific symbols and func-
tions need to be defined. For this simple model we have the fields
and the coupling constant as only new symbols.

Symbols [f i e l d . em] , [f i e l d . ep] , [f i e l d . ph] , e ;

Instead of using the file vertices.hh one can also use his own
vertex definitions. In this case the Form file must contain the defi-
nition

#Define USEVERTEXPROC ”1”

and it must define the procedure ReplaceVertices. An example
for QED is given below.

36

#Procedure Rep laceVer t i c e s
Identify Once ver tex (iv ? ,

[f i e l d . ep] , idx1 ? , −1, k1 ? , idx1L1 ? , −1, idx1C1 ? ,
[f i e l d . em] , idx2 ? , 1 , k2 ? , idx2L1 ? , 1 , idx2C1 ? ,
[f i e l d . ph] , idx3 ? , 2 , k3 ? , idx3L2 ? , 1 , idx3C1 ?) =

PREFACTOR(i ∗ e) ∗
NCContainer (Sm(idx3L2) , idx1L1 , idx2L1) ∗
node (idx1 , idx2 , idx3) ;

#EndProcedure

It should be noted that GoSam expects the procedure VertexConstants
to exist in both cases. If all the constants are already substituted
inside ReplaceVertices the file must still provide a possibly empty
empty implementation of VertexConstants. GoSam ensures that
VertexConstants is always called after ReplaceVertices.

It is recommended to wrap any factors that are global prefactors
to the diagram into the argument of the function PREFACTOR as
GoSam scans for these functions and brackets them out. Each vertex
definition must contain a factor node which contains the indices1

of the fields at this vertex.

The QGraf style file generates vertex functions as follows:

vertex(vertex index,

field1, index1,±2spin1,momentum1, µ1,±color rep1, color index1,

field2, index2,±2spin2,momentum2, µ2,±color rep2, color index2,

...

fieldn, indexn,±2spinn,momentumn, µn,±color repn, color indexn)

The entries are:

vertex index : The unique index of this vertex. (iv1, iv2, . . .)

fieldi : The field name of the i-th particle. These names are con-
structed from the QGraf field name as [field.〈name〉].

indexi : A unique name for this “ray” (at index 1 they are idx1r1,
idx1r2, . . .)

±2spini : twice the spin of the i-th particle. The sign distinguishes
particles (+) from antiparticles (−).

momentumi : the incoming momentum of the i-th particle.

1 In QGraf’s terminology these indices are a combination of vertex and ray
index of the field.

37

µi : the Lorentz index of the i-th particle. Depending on the spin
of the particle this is a spinor index (spin 1/2), a Lorentz in-
dex (spin 1) or a dummy index (spin 0). For higher spins this
index must be split into its components using the function
SplitLorentzIndex. For its proper definition the reader is
referred to the document src/form/lorentz.pdf.

±color repi : the color representation of the i-th particle. Allowed values
currently are ±1,±3,±8, although the sign only really makes
sense for the fundamental representation 3 and its conjugate
3̄ ≡ −3.

color indexi : The color index of the i-th particle. Depending on the color
representation this is an index in the fundamental, the adjoint
or the trivial representation.

All symbols defined in src/form/symbols.hh are also accessible
in this Form file. Note: until recently the definition of Sqrt2 and! →
sqrt2 were part of the model file. Now these symbols are part of
src/form/symbols.hh and must not be redefined.

All Dirac matrices and metric tensors must use the notation intro-! →
duced by spinney. The metric tensor is gµν = d(µ, ν) and γµ =
Sm(µ), γ5 = Gamma5, Π+ = ProjPlus, Π− = ProjMinus. All non-
commuting objects must reside inside the function NCContainter

(see example).

The color structure must use the objects tAij = T(A, i, j) (where the

color flow is such thatj is the index of an anti-quark), fABC =
f(A,B,C) and fABEfCDE = f4(A,B,C,D). At vertices coupling
colored with colorless particles it might be necessary to use the d

tensor to file the color flow through the vertex.

Note that all propagators and wave functions are defined in a! →
model independent way in the files src/form/propagators.hh and
src/form/legs.hh. Please, refrain from modifying these files di-
rectly but make all changes to src/form/lorentz.nw.

In theories with Maiorana fermions the model file should include
the following line:

#Define DISPOSEQGRAFSIGN ”1”

C.2 Standard Model (sm)

C.2.1 Synopsis

The model ‘sm’ contains the Feynman rules for the Standard Model
in Feynman gauge as described in [BDJ01, Appendix A].

38

C.2.2 Particle Content

Name Alternative Names Mass Comment

ep positron e+ me e+

em electron e- me e−

ne 0 νe
nebar ne~ 0 ν̄e
mup mu+ mmu µ+

mum mu- mmu µ−

nmu 0 νµ
nmubar nmu~ 0 ν̄µ
taup tau+ mtau e+

taum tau- mtau e−

ntau 0 ντ
ntaubar ntau~ 0 ν̄τ

Leptons

Name Alternative Names Mass Comment

U u mU u
Ubar u~ mU ū
D d mD d
Dbar d~ mD d̄

S s mS u
Sbar s~ mS ū
C c mC d
Cbar c~ mC d̄

T t mT t
Tbar t~ mT t̄
B b mB b
Bbar b~ mB b̄

Quarks

Name Alternative Names Mass Comment

g gluon 0 g
A photon gamma 0 γ
Z mZ Z
Wp W+ mW W+

Wm W- mW W−

Gauge Bosons

Name Alternative Names Mass Comment

H h higgs mH H
phim phi- mW φ−

phip phi+ mW φ+

chi mZ χ

Scalar Bosons

39

Name Alternative Names Mass Comment

gh 0 ug

ghbar 0 ūg

ghA 0 uA

ghAbar 0 ūA

ghZ mZ uZ

ghZbar mZ ūZ

ghWp mW u+

ghWpbar mW ū+

ghWm mW u−

ghWmbar mW ū−

Ghost Fields

C.2.3 Parameters

This section lists all model parameters which are not already listed
as particle masses.

Name Symbol Description

NC NC Number of colors in QCD
e e electro-weak coupling constant: α = e2/(4π)
gs gs strong coupling constant: αs = g2

s/(4π)
sw sw = sin θw sine of weak mixing angle
cw cw = cos θw cosine of weak mixing angle
VUD Vud CKM mixing matrix element

CVDU V †du — ” —
VUS Vus — ” —

CVSU V †su — ” —
VUB Vub — ” —

CVBU V †bu — ” —
VCD Vcd — ” —

CVDC V †dc — ” —
VCS Vcs — ” —

CVSC V †sc — ” —
VCB Vcb — ” —

CVBC V †bc — ” —
VTD Vtd — ” —

CVTD V †dt — ” —
VTS Vts — ” —

CVST V †st — ” —
VTB Vtb — ” —

CVTB V †bt — ” —

40

Appendix D Template for a Process Setup File

In order to create a new process setup file one can invoke→ Chapter 3.1

$ gosam.py --template your new file.in

This is the recommended way of obtaining the most recent docu-
mentation of the available options.

The syntax of a general process setup file should obey the following
rules:

• A setup file (process card) consists of a sequence of lines rep-
resenting key-value pairs. A key-value pair can span across
several lines if each of the lines except the last line is termi-
nated by a backslash.

• A setup file is allowed to contain any number of blank lines or
comment lines, indicated by a ‘!’ or a ‘#’ as its first non-blank
character.

• The key and the value are separated by a blank, a colon ‘:’ or
an equals sign ‘=’. Notice that the line ‘key = value’ will be
interpreted as the key ‘key’ followed by the value ‘= value’
as the terminator of the key is the blank and not the equals
sign. In order to produce one of the terminators literally
as a part of the key one has to escape it with a backslash,
e.g. ‘very\ long\ name:value’ would translate to the key
‘very long name’ and the value ‘value’.

• The escape characters ‘\\’, ‘\n’, ‘\r’, ‘\f’ and ‘\t’ work as
usual. Backslashes in front of any other character are just
dropped.

• Leading and trailing blanks are removed from the key and
the value by default and must be escaped to preserve them.
Whitespace is also removed in front and after commas if the
value is interpreted as a comma separated list.

• If an option expects a logical value, the literals ‘1’, ‘true’,
‘.true.’, ‘t’, ‘.t.’, ‘yes’ and ‘.y.’ are recognized as the
value true. These values are interpreted case-insensitively. If
a value is not recognized as true it corresponds to false.

Note, that deviating from the Java standard, unicode escapes, such! →
as ‘\u10EF’, have not been implemented; neither are octal and
hexadecimal escape sequences recognized.

process name : (text)

A symbolic name for this process. This name will be used

as a prefix for the Fortran modules.

Golem will insert an underscore after this prefix.

If the process name is left blank no prefix will be used

and no extra underscore will be generated.

process path : (text)

The path to which all Form output is written.

If no absolute path is given, the path is interpreted relative

to the working directory from which golem-main.py is run.

Example:

process_path=/scratch/golem_processes/process1

in : (comma separated list)

A comma-separated list of initial state particles.

Which particle names are valid depends on the

model file in use.

Examples (Standard Model):

1) in=u,u~

2) in=e+,e-

3) in=g,g

out : (comma separated list)

A comma-separated list of final state particles.

Which particle names are valid depends on the

model file in use.

Examples (Standard Model):

1) out=H,u,u~

2) out=e+,e-,gamma

3) out=b,b~,t,t~

model : (comma separated list)

This option allows the selection of a model for the

Feynman rules. It has to conform with one of four possible

formats:

1) model=<name>

2) model=<path>, <name>

3) model=<path>, <number>

4) model=FeynRules, <path>

Format 1) searches for the model files <name>, <name>.hh

and <name>.py in the models/ directory under the installation

42

path of Golem.

Format 2) is similar to format 1) but <path> is used instead

of the models/ directory of the Golem installation

Format 3) expects the files func<number>.mdl, lgrng<number>.mdl,

prtcls<number>.mdl and vars<number>.mdl in the directory <path>.

These files need to be in CalcHEP/CompHEP format.

Format 4) expects files according to the new FeynRules Python

interface in the directory specified by <path>.

(Not fully implemented yet)

model.options : (comma separated list)

If the model in use supports options they can be passed via this

property.

order : (comma separated list)

A 3-tuple <coupling>,<born>,<virt> where <coupling> denotes

a function of the qgraf style file which can be used as

an argument in a ’vsum’ statement. For the standard model

file ’sm’ there are two such functions, ’gs’ which counts

powers of the strong coupling and ’gw’ which counts powers

of the weak coupling. <born> is the sum of powers for the

tree level amplitude and <virt> for the virtual amplitude.

The line

order = gs, 4, 6

would select all diagrams which have (gs)^4 at tree level

and all loop graphs with (gs)^6.

Note: The line

order = gw, 2, 2

does not imply that no virtual corrections are calculated.

Instead, for the virtual corrections diagrams are chosen

with the same order in gw but higher order in gs.

In other models with more than two different coupling

constants additional ’vsum’ statements, which can be passed

via the qgraph.verbatim option, might be needed

to select the correct set of diagrams.

If the last number is omitted no virtual corrections are

calculated.

See also: qgraf.options, qgraf.verbatim

zero : (comma separated list)

A list of symbols that should be treated as identically

zero throughout the whole calculation. All of these

43

symbols must be defined by the model file.

Examples:

1) # Light masses are set to zero here:

zero=me,mU,mD,mS

2) # Diagonal CKM matrix:

zero=VUS, VUB, CVDC, CVDT, \

VCD, VCB, CVSU, CVST, \

VTD, VTS, CVBU, CVBC

one= VUD, VCS, VTB, \

CVDU, CVSC, CVBT

See also: model, one

one : (comma separated list)

A list of symbols that should be treated as identically

one throughout the whole calculation. All of these

symbols must be defined by the model file.

Example:

one=gs, e

See also: model, zero

helicities : (comma separated list)

A list of helicities to be calculated. An empty list

means that all possible helicities should be generated.

The helicities are specified as a string of characters

according to the following table:

spin massive | ’m’ ’-’ ’0’ ’+’ ’k’

0 YES/NO | ---- ---- 0 ---- ----

1/2 YES/NO | ---- -1/2 ---- +1/2 ----

1 NO | ---- -1 ---- +1 ----

1 YES | ---- -1 0 +1 ----

3/2 NO | -3/2 ---- ---- ---- +3/2

3/2 YES | -3/2 -1/2 ---- +1/2 +3/2

2 NO | -2 ---- ---- ---- +2

2 YES | -2 -1 0 +1 +2

Please, note that ’k’ and ’m’ are not in use yet but reserved

for future extensions to higher spins.

The characters correspond to particle 1, 2, ... from left to

right.

Examples:

e+, e- --> gamma, gamma:

44

Only three helicities required; the other ones are

either zero or can be obtained by symmetry

transformations.

helicities=+-++,+-+-,+---;

Multiple helicities can be encoded in patterns, which are expanded

at the time of code generation. Patterns can have one of the following

forms:

[+-], [+-0], [+0] etc. : the bracket expands to one of the symbols

in the bracket at a time.

EXAMPLE

helicities=[+-]+[+-0]

expands to 6 different helicities:

helicities=+++, ++-, ++0, -++, -+-, -+0

[a=+-], etc. : as above, but the helicity is also assigned to the

symbol and can be reused.

EXAMPLE

helicities=[i=+-]+i+

expands to two helicities

helicities=++++, -+-+

[ab=+-0], etc. : as above, the first symbol is assigned the helicity,

the second is minus the helicity

EXAMPLE

helicities=[qQ=+-][pP=+-]PQ[+-0]

expands to 12 helicities

helicities=++--+,++---,++--0,+-+-+,+-+--,+-+-0,\

-+-++,-+-+-,-+-+0,--+++,--++-,--++0

qgraf.options : (comma separated list)

A list of options which is passed to qgraf via the ’options’ line.

Possible values (as of qgraf.3.1.1) are zero, one or more of:

onepi, onshell, nosigma, nosnail, notadpole, floop

topol

Please, refer to the QGraf documentation for details.

qgraf.verbatim : (text)

This option allows to send verbatim lines to

the file qgraf.dat. This can be useful if the user

wishes to put additional restricitons to the selected diagrams.

This option is mainly inteded for the use of the operators

rprop, iprop, chord, bridge, psum

Note, that the use of ’vsum’ might interfer with the

option qgraf.power.

Example:

qgraf.verbatim=\

no top quarks: \n\

true=iprop[T, 0, 0];\n\

45

at least one Higgs:\n\

false=iprop[H, 0, 0];\n

Please, refer to the QGraf documentation for details.

See also: qgraf.options, order

qgraf.verbatim.lo : (text)

Same as qgraf.verbatim but only applied to LO diagrams.

See also: qgraf.verbatim, qgraf.verbatim.nlo

qgraf.verbatim.nlo : (text)

Same as qgraf.verbatim but only applied to LO diagrams.

See also: qgraf.verbatim, qgraf.verbatim.nlo

qgraf.bin : (text)

Points to the QGraf executable.

Example:

qgraf.bin=/home/my_user_name/bin/qgraf

Default: qgraf

form.bin : (text)

Points to the Form executable.

Examples:

1) # Use TForm:

form.bin=tform

2) # Use non-standard location:

form.bin=/home/my_user_name/bin/form

Default: form

form.tempdir : (text)

Temporary directory for Form. Should point to a directory

on a local disk.

Examples:

form.tempdir=/tmp

form.tempdir=/scratch

Default: /tmp

haggies.bin : (text)

Points to the Haggies executable.

Haggies is used to transform the expressions of the diagrams

into optimized Fortran90 programs. It can be obtained from

46

http://www.nikhef.nl/~thomasr/download.php

Examples:

1) haggies.bin=/home/my_user_name/bin/haggies

2) haggies.bin=/usr/bin/java -Xmx50m -jar ./haggies.jar

Default: java -jar /home/gionata/share/golem/haggies/haggies.jar

fc.bin : (text)

Denotes the executable file of the Fortran90 compiler.

Default: gfortran

group : (true/false)

Flag whether or not the tree-level diagrams should be grouped

into a single file.

Default: True

extensions : (comma separated list)

A list of extension names which should be activated for the

code generation. These names are not standardised at the moment.

One option which is affected by this is LDFLAGS. In the following

example only ldflags.looptools is added to the LDFLAGS variable

in the makefiles whereas the variable ldflags.qcdloop is ignored.

extensions=golem95,samurai

ldflags.qcdloops=-L/usr/local/lib -lqcdloop

NOTE: Make sure you activate at least one of ’samurai’ and ’golem95’.

Currently active extensions:

samurai --- use Samurai for the reduction

golem95 --- use Golem95 for the reduction

pjfry --- use PJFry for the reduction (experimental)

dred --- use four dimensional algebra (dim. reduction)

fr5 --- finite renormalisation for gamma_5

powhegbox --- generate additional code specific to PowHEGBox

autotools --- use Makefiles generated by autotools

qshift --- apply the shift of Q already at the FORM level

topolynomial --- (with FORM >= 4.0) use the ToPolynomial command

gaugecheck --- modify gauge boson wave functions to allow for

a limited gauge check (introduces gauge*z variables)

olp_daemon --- (OLP interface only): generates a C-program providing

network access to the amplitude

templates : (text)

47

Path pointing to the directory containing the template

files for the process. If not set golem uses the directory

<golem_path>/templates.

The directory must contain a file called ’template.xml’

debug : (comma separated list)

A list of debug flags.

Currently, the words ’lo’, ’nlo’ and ’all’ are supported.

golem95.fcflags : (text)

FCFLAGS required to compile with golem95.

Example:

golem95.fcflags=-I/usr/local/include/golem95

Default: ‘pkg-config --cflags golem‘

golem95.ldflags : (text)

LDFLAGS required to link golem95.

Example:

golem95.ldflags=-L/usr/local/lib/ -lgolem-gfortran-double

Default: ‘pkg-config --libs golem‘

samurai.fcflags : (text)

FCFLAGS required to compile with samurai.

Example:

samurai.fcflags=-I/usr/local/include/samurai

samurai.ldflags : (text)

LDFLAGS required to link samurai.

Example:

samurai.ldflags=-L/usr/local/lib/ -lsamurai-gfortran-double

samurai.version : (text)

The version of the samurai library in use.

Example:

samurai.version=2.1.0

Default: 2.0

select.lo : (comma separated list)

A list of integer numbers, indicating leading order diagrams to be

selected. If no list is given, all diagrams are selected.

Otherwise, all diagrams not in the list are discarded.

48

The list may contain ranges:

select.lo=1,2,5:10:3, 50:53

which is equivalent to

select.lo=1,2,5,8,50,51,52,53

See also: select.nlo, filter.lo, filter.nlo

Default: ,

select.nlo : (comma separated list)

A list of integer numbers, indicating one-loop diagrams to be selected.

If no list is given, all diagrams are selected.

Otherwise, all diagrams not in the list are discarded.

The list may contain ranges:

select.nlo=1,2,5:10:3, 50:53

which is equivalent to

select.nlo=1,2,5,8,50,51,52,53

See also: select.lo, filter.lo, filter.nlo

Default: ,

filter.lo : (text)

A python function which provides a filter for tree diagrams.

filter.lo=lambda d: d.iprop(Z) == 1 \

and d.vertices(Z, U, Ubar) == 0

The following methods of the diagram class can be used:

* d.rank() = the maximum rank in Q possible for this diagram

* d.loopsize() = the number of propagators in the loop

* d.vertices(field1, field2, ...) = number of vertices

with the given fields

* d.loopvertices(field1, field2, ...) = number of vertices

with the given fields; only those vertices which have

at least one loop propagator attached to them

* d.iprop(field, momentum="...", twospin=..., massive=True/False,

color=...) =

the number of propagators with the given properties:

- field: a field or list of fields

- momentum: a string denoting the momentum through this propagator,

49

such as "k1+k2"

- twospin: two times the spin (integer number)

- massive: select only propagators with/without a non-zero mass

- color: one of the numbers 1, 3, -3 or 8, or a list of

these numbers

* d.chord(...) = number of loop propagators with the given properties;

the arguments are the same as in iprop

* d.bridge(...) = number of non-loop propagators with the given

properties; the arguments are the same as in iprop

See also: filter.nlo, select.lo, select.nlo

filter.nlo : (text)

A python function which provides a filter for loop diagrams.

See filter.lo for more explanation.

filter.module : (text)

A python file of predefined functions which should be available

in filters.

Example:

filter.module=filter.py

filter.nlo=my_nlo_filter("vertices.txt")

filter.lo=my_nlo_filter("vertices.txt")

------ filter.py -----

class my_nlo_filter_class:

def __init__(self, fname):

self.fields = []

f = open(fname, ’r’)

for line in f.readlines():

fields = map(lambda s: s.strip(),

line.split(","))

self.fields.append(fields)

f.close()

def __call__(self, diag):

for lst in self.fields:

if diag.vertices(*lst) > 0:

return False

return True

See filter.lo, filter.nlo

50

renorm beta : (true/false)

Set the name of the same variable in config.f90

Activates or disables beta function renormalisation

QCD only

Default: True

renorm mqwf : (true/false)

Set the name of the same variable in config.f90

Activates or disables UV countertems coming from

external massive quarks

QCD only

Default: True

renorm decoupling : (true/false)

Set the name of the same variable in config.f90

Activates or disables UV counterterms coming from

massive quark loops

QCD only

Default: True

renorm mqse : (true/false)

Set the name of the same variable in config.f90

Activates or disables the UV counterterm coming from the

massive quark propagators

QCD only

Default: True

renorm logs : (true/false)

Set the name of the same variable in config.f90

Activates or disables the logarithmic finite terms

of all UV counterterms

QCD only

Default: True

renorm gamma5 : (true/false)

51

Set the same variable in config.f90

Activates finite renormalisation for axial couplings in the

’t Hooft-Veltman scheme

QCD only, works only with built-in model files.

Default: True

reduction interoperation : (integer number)

Set the same variable in config.f90. A value of ’-1’ lets gosam

decide depending on the specified extensions.

See common/config.f90 for details.

Default: -1

reference-vectors : (comma separated list)

A list of reference vectors for massive and higher spin particles.

For vectors which are not assigned here, the program picks a reference

vector automatically.

Each entry of the list has to be of the form <index>:<index>

EXAMPLE

in=g,u

out=t,W+

reference-vectors=1:2,3:4,4:3

In this example, the gluon (particle 1) takes the momentum k2

as reference momentum for the polarisation vector. The massive

top quark (particle 3) uses the light-cone projection l4 of the

W-boson as reference direction for its own momentum splitting.

Similarly, the momentum of the W-boson is split into a direction

l4 and one along l3.

If cycles are generated in the list (l3 has to be known in order

to determine l4 and vice versa in the above example) they must be

at most of length two. For the reference momenta of lightlike

gauge bosons the length of cycles does not matter, e.g.

in=g,g

out=g,g

reference-vectors=1:2,2:3,3:4,4:1

abbrev.limit : (text)

Maximum number of instructions per subroutine when calculating

abbreviations, if this number is positive.

52

Default: 0

abbrev.level : (text)

The level at which abbreviations are generated. The value should be

one of:

helicity generates files helicity<X>/abbrevh<X>.f90

group generates files helicity<X>/abbrevg<G>h<X>.f90

diagram generates files helicity<X>/abbrevd<D>h<X>.f90

Default: helicity

r2 : (text)

The algorithm how to treat the R2 term:

implicit -- mu^2 terms are kept in the numerator and reduced

at runtime

explicit -- mu^2 terms are reduced analytically

only -- same as ’explicit’ but only the R2 term is kept in

the result

off -- all mu^2 terms are set to zero

Default: implicit

crossings : (comma separated list)

A list of crossed processes derived from this process.

For each process in the list a module similar to matrix.f90 is

generated.

Example:

process_name=ddx_uux

in=1,-1

out=2,-2

crossings=dxd_uux: -1 1 > 2 -2, ud_ud: 2 1 > 2 1

pyxodraw : (true/false)

Specifies whether to draw any diagrams or not.

Default: True

53

Conditions of Use

GoSam – An automated One-Loop matrix element generator.
Copyright (C) 2011 The GoSam Collaboration

• Gavin Cullen

• Nicolas Greiner

• Gudrun Heinrich

• Gionata Luisoni

• Pierpaolo Mastrolia

• Giovanni Ossola

• Thomas Reiter

• Francesco Tramontano

This program is free software: you can redistribute it and/or mod-
ify it under the terms of the GNU General Public License as pub-
lished by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied war-
ranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public Li-
cense along with this program. If not, see http://www.gnu.org/

licenses/.

Scientific publications prepared using the present version of GoSam
or any modified version of it or any code linking to GoSam or parts
of it should make a clear reference to the publication:

G. Cullen et al.,
“Automated One-Loop Calculations with GoSam,”
arXiv:1111.2034 [hep-ph]

The GNU General Public License Version 3

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this

license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your freedom
to share and change the works. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change all versions of a program–to make sure it remains
free software for all its users. We, the Free Software Foundation, use the GNU General Public
License for most of our software; it applies also to any other work released this way by its
authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for them if you wish), that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs, and that you know you
can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you
to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of
the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
pass on to the recipients the same freedoms that you received. You must make sure that they,
too, receive or can get the source code. And you must show them these terms so they know
their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright
on the software, and (2) offer you this License giving you legal permission to copy, distribute
and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty
for this free software. For both users’ and authors’ sake, the GPL requires that modified versions
be marked as changed, so that their problems will not be attributed erroneously to authors of
previous versions.

Some devices are designed to deny users access to install or run modified versions of the software
inside them, although the manufacturer can do so. This is fundamentally incompatible with
the aim of protecting users’ freedom to change the software. The systematic pattern of such
abuse occurs in the area of products for individuals to use, which is precisely where it is most
unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for
those products. If such problems arise substantially in other domains, we stand ready to extend
this provision to those domains in future versions of the GPL, as needed to protect the freedom
of users.

Finally, every program is threatened constantly by software patents. States should not allow
patents to restrict development and use of software on general-purpose computers, but in those

55

that do, we wish to avoid the special danger that patents applied to a free program could make
it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to
render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

Terms and Conditions

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee
is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public, and
in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or
receive copies. Mere interaction with a user through a computer network, with no transfer
of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except to
the extent that warranties are provided), that licensees may convey the work under this
License, and how to view a copy of this License. If the interface presents a list of user
commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifica-
tions to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a
recognized standards body, or, in the case of interfaces specified for a particular program-
ming language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”, in

56

this context, means a major essential component (kernel, window system, and so on) of
the specific operating system (if any) on which the executable work runs, or a compiler
used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to modify
the work, including scripts to control those activities. However, it does not include the
work’s System Libraries, or general-purpose tools or generally available free programs
which are used unmodified in performing those activities but which are not part of the
work. For example, Corresponding Source includes interface definition files associated
with source files for the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require, such as by intimate
data communication or control flow between those subprograms and other parts of the
work.

The Corresponding Source need not include anything that users can regenerate automat-
ically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program,
and are irrevocable provided the stated conditions are met. This License explicitly affirms
your unlimited permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its content, constitutes
a covered work. This License acknowledges your rights of fair use or other equivalent, as
provided by copyright law.

You may make, run and propagate covered works that you do not convey, without condi-
tions so long as your license otherwise remains in force. You may convey covered works
to others for the sole purpose of having them make modifications exclusively for you, or
provide you with facilities for running those works, provided that you comply with the
terms of this License in conveying all material for which you do not control copyright.
Those thus making or running the covered works for you must do so exclusively on your
behalf, under your direction and control, on terms that prohibit them from making any
copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated
below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any
applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted
on 20 December 1996, or similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention to
limit operation or modification of the work as a means of enforcing, against the work’s
users, your or third parties’ legal rights to forbid circumvention of technological measures.

57

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License along
with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that you
also meet all of these conditions:

(a) The work must carry prominent notices stating that you modified it, and giving a
relevant date.

(b) The work must carry prominent notices stating that it is released under this License
and any conditions added under section 7. This requirement modifies the requirement
in section 4 to “keep intact all notices”.

(c) You must license the entire work, as a whole, under this License to anyone who comes
into possession of a copy. This License will therefore apply, along with any applicable
section 7 additional terms, to the whole of the work, and all its parts, regardless of
how they are packaged. This License gives no permission to license the work in any
other way, but it does not invalidate such permission if you have separately received
it.

(d) If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display Ap-
propriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are
not by their nature extensions of the covered work, and which are not combined with it
such as to form a larger program, in or on a volume of a storage or distribution medium, is
called an “aggregate” if the compilation and its resulting copyright are not used to limit
the access or legal rights of the compilation’s users beyond what the individual works
permit. Inclusion of a covered work in an aggregate does not cause this License to apply
to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under the
terms of this License, in one of these ways:

(a) Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by the Corresponding Source fixed on a durable
physical medium customarily used for software interchange.

58

(b) Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by a written offer, valid for at least three years
and valid for as long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a copy of the Corre-
sponding Source for all the software in the product that is covered by this License,
on a durable physical medium customarily used for software interchange, for a price
no more than your reasonable cost of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a network server at no charge.

(c) Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally and
noncommercially, and only if you received the object code with such an offer, in
accord with subsection 6b.

(d) Convey the object code by offering access from a designated place (gratis or for a
charge), and offer equivalent access to the Corresponding Source in the same way
through the same place at no further charge. You need not require recipients to copy
the Corresponding Source along with the object code. If the place to copy the object
code is a network server, the Corresponding Source may be on a different server
(operated by you or a third party) that supports equivalent copying facilities, pro-
vided you maintain clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the Corresponding Source,
you remain obligated to ensure that it is available for as long as needed to satisfy
these requirements.

(e) Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corre-
sponding Source as a System Library, need not be included in conveying the object code
work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or (2)
anything designed or sold for incorporation into a dwelling. In determining whether a
product is a consumer product, doubtful cases shall be resolved in favor of coverage. For
a particular product received by a particular user, “normally used” refers to a typical or
common use of that class of product, regardless of the status of the particular user or
of the way in which the particular user actually uses, or expects or is expected to use,
the product. A product is a consumer product regardless of whether the product has
substantial commercial, industrial or non-consumer uses, unless such uses represent the
only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.
The information must suffice to ensure that the continued functioning of the modified ob-
ject code is in no case prevented or interfered with solely because modification has been
made.

If you convey an object code work under this section in, or with, or specifically for use

59

in, a User Product, and the conveying occurs as part of a transaction in which the right
of possession and use of the User Product is transferred to the recipient in perpetuity or
for a fixed term (regardless of how the transaction is characterized), the Corresponding
Source conveyed under this section must be accompanied by the Installation Information.
But this requirement does not apply if neither you nor any third party retains the ability
to install modified object code on the User Product (for example, the work has been
installed in ROM).

The requirement to provide Installation Information does not include a requirement to
continue to provide support service, warranty, or updates for a work that has been mod-
ified or installed by the recipient, or for the User Product in which it has been modified
or installed. Access to a network may be denied when the modification itself materially
and adversely affects the operation of the network or violates the rules and protocols for
communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this
section must be in a format that is publicly documented (and with an implementation
available to the public in source code form), and must require no special password or key
for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making
exceptions from one or more of its conditions. Additional permissions that are applicable
to the entire Program shall be treated as though they were included in this License, to
the extent that they are valid under applicable law. If additional permissions apply only
to part of the Program, that part may be used separately under those permissions, but
the entire Program remains governed by this License without regard to the additional
permissions.

When you convey a copy of a covered work, you may at your option remove any additional
permissions from that copy, or from any part of it. (Additional permissions may be written
to require their own removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work, for which you have
or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement the
terms of this License with terms:

(a) Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

(b) Requiring preservation of specified reasonable legal notices or author attributions in
that material or in the Appropriate Legal Notices displayed by works containing it;
or

(c) Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

(d) Limiting the use for publicity purposes of names of licensors or authors of the mate-
rial; or

60

(e) Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

(f) Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions of
liability to the recipient, for any liability that these contractual assumptions directly
impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the
meaning of section 10. If the Program as you received it, or any part of it, contains a notice
stating that it is governed by this License along with a term that is a further restriction,
you may remove that term. If a license document contains a further restriction but permits
relicensing or conveying under this License, you may add to a covered work material
governed by the terms of that license document, provided that the further restriction
does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately
written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this
License. Any attempt otherwise to propagate or modify it is void, and will automatically
terminate your rights under this License (including any patent licenses granted under the
third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to 60 days after the
cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, you do not qualify to receive new licenses for
the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.
However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.

61

Therefore, by modifying or propagating a covered work, you indicate your acceptance of
this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from
the original licensors, to run, modify and propagate that work, subject to this License.
You are not responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or sub-
stantially all assets of one, or subdividing an organization, or merging organizations. If
propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program or
any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program
or a work on which the Program is based. The work thus licensed is called the contributor’s
“contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of further
modification of the contributor version. For purposes of this definition, “control” includes
the right to grant patent sublicenses in a manner consistent with the requirements of this
License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under
the contributor’s essential patent claims, to make, use, sell, offer for sale, import and
otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such a
patent license to a party means to make such an agreement or commitment not to enforce
a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding
Source of the work is not available for anyone to copy, free of charge and under the terms
of this License, through a publicly available network server or other readily accessible
means, then you must either (1) cause the Corresponding Source to be so available, or
(2) arrange to deprive yourself of the benefit of the patent license for this particular
work, or (3) arrange, in a manner consistent with the requirements of this License, to

62

extend the patent license to downstream recipients. “Knowingly relying” means you have
actual knowledge that, but for the patent license, your conveying the covered work in a
country, or your recipient’s use of the covered work in a country, would infringe one or
more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant is
automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage,
prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights
that are specifically granted under this License. You may not convey a covered work if
you are a party to an arrangement with a third party that is in the business of distributing
software, under which you make payment to the third party based on the extent of your
activity of conveying the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory patent license (a)
in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement, or that patent license
was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of
this License. If you cannot convey a covered work so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence
you may not convey it at all. For example, if you agree to terms that obligate you to
collect a royalty for further conveying from those to whom you convey the Program, the
only way you could satisfy both those terms and this License would be to refrain entirely
from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or com-
bine any covered work with a work licensed under version 3 of the GNU Affero General
Public License into a single combined work, and to convey the resulting work. The terms
of this License will continue to apply to the part which is the covered work, but the
special requirements of the GNU Affero General Public License, section 13, concerning
interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns.

63

Each version is given a distinguishing version number. If the Program specifies that a
certain numbered version of the GNU General Public License “or any later version” applies
to it, you have the option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software Foundation. If the Program
does not specify a version number of the GNU General Public License, you may choose
any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General
Public License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED
BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a copy of the Program
in return for a fee.

End of Terms and Conditions

How to Apply These Terms to Your New Programs

64

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) <textyear> <name of author>

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands show w and show c should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for
a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into pro-
prietary programs. If your program is a subroutine library, you may consider it more
useful to permit linking proprietary applications with the library. If this is what you want
to do, use the GNU Lesser General Public License instead of this License. But first, please
read http://www.gnu.org/philosophy/why-not-lgpl.html.

65

Bibliography

[BBD+10] T. Binoth, F. Boudjema, G. Dissertori, A. Lazopoulos, A. Denner, et al., A Pro-
posal for a standard interface between Monte Carlo tools and one-loop programs,
Comput.Phys.Commun. 181 (2010), 1612–1622, Dedicated to the memory of, and
in tribute to, Thomas Binoth, who led the effort to develop this proposal for Les
Houches 2009.

[BDJ01] Manfred Böhm, Ansgar Denner, and Hans Joos, Gauge theories of the strong and
electroweak interaction, 3rd ed., Teubner, Stuttgart and Leipzig and Wiesbaden,
2001.

[BGH+09] T. Binoth, J. Ph. Guillet, G. Heinrich, E. Pilon, and T. Reiter, Golem95: a nu-
merical program to calculate one-loop tensor integrals with up to six external legs,
Comput. Phys. Commun. 180 (2009), 2317–2330.

[CGH+11] G. Cullen, J.Ph. Guillet, G. Heinrich, T. Kleinschmidt, E. Pilon, et al., Golem95C:
A library for one-loop integrals with complex masses, Comput.Phys.Commun. 182
(2011), 2276–2284.

[DDF+11] Celine Degrande, Claude Duhr, Benjamin Fuks, David Grellscheid, Olivier Matte-
laer, et al., UFO - The Universal FeynRules Output, * Temporary entry *.

[FR11] J. Fleischer and T. Riemann, A complete algebraic reduction of one-loop tensor
Feynman integrals, Phys. Rev. D83 (2011), 073004.

[Mal70] Michael A. Malcolm, An algorithm for floating-point accumulation of sums with
small relative error, Tech. report, Stanford University, Stanford, CA, USA, 1970.

[MORT10] P. Mastrolia, G. Ossola, T. Reiter, and F. Tramontano, Scattering AMplitudes from
Unitarity-based Reduction Algorithm at the Integrand-level, JHEP 08 (2010), 080.

[Nog93] Paulo Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105
(1993), 279–289.

[Ohl95] Thorsten Ohl, Drawing Feynman diagrams with Latex and Metafont, Comput. Phys.
Commun. 90 (1995), 340–354.

[OPP08] Giovanni Ossola, Costas G. Papadopoulos, and Roberto Pittau, On the Rational
Terms of the one-loop amplitudes, JHEP 0805 (2008), 004.

[Rei09] Thomas Reiter, Automated Evaluation of One-Loop Six-Point Processes for the
LHC.

[Rei10] , Optimising Code Generation with haggies, Comput.Phys.Commun. 181
(2010), 1301–1331.

[Sem10] A. Semenov, LanHEP - a package for automatic generation of Feynman rules from
the Lagrangian. Updated version 3.1.

[Ver94] J. A. M. Vermaseren, Axodraw, Comput. Phys. Commun. 83 (1994), 45–58.

[Ver00] , New features of FORM.

[Yun11] Valery Yundin, *** working title ***, Ph.D. thesis, DESY Zeuthen, 2011, PhD
thesis.

67

	Introduction
	Synopsis
	Conventions

	Setup
	Prerequisites
	Download
	Subversion
	HTTP Download

	Installation
	Directory Structure

	Setup of a Process
	Introduction
	Example: e+e- to tt-bar at NLO in QCD
	Process Directory Structure
	Code Generation and Compilation
	Customization

	Drawing the Feynman Diagrams
	Import of Model Files
	Import from FeynRules
	Import from LanHEP

	Handling Big Processes
	Grouping of Tree Level Diagrams
	Computation of Abbreviations
	Splitting the Process

	Advanced Usage
	Advanced Diagram Selection
	Restricting the Generation with QGraf
	Selecting Diagrams by their Number
	Filtering Diagrams in Python

	The Binoth Les Houches Accord Interface
	Initialisation Phase
	Command Line Arguments of gosam.py –olp
	GoSam Extensions to the Original Standard
	Advanced Usage

	Runtime Phase
	API Functions
	The OLP Socket Protocol

	Conventions of the Amplitude
	Convention of golem95
	Convention of

	Explicit Reduction of the R2 Terms
	The included Model Files
	Format of the Model Files
	The Python File
	The QGraf File
	The Form File

	Standard Model (sm)
	Synopsis
	Particle Content
	Parameters

	Template for a Process Setup File

